On Antiproximal Closed Radially Bounded Convex Sets in the $l_1$-Space
Matematičeskie zametki, Tome 84 (2008) no. 5, pp. 785-787

Voir la notice de l'article provenant de la source Math-Net.Ru

Mots-clés : antiproximal set
Keywords: convex set, nearest point, Banach space, Borel measure, metrizable space, probability measure, locally convex space.
@article{MZM_2008_84_5_a14,
     author = {V. S. Balaganskii},
     title = {On {Antiproximal} {Closed} {Radially} {Bounded} {Convex} {Sets} in the $l_1${-Space}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {785--787},
     publisher = {mathdoc},
     volume = {84},
     number = {5},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2008_84_5_a14/}
}
TY  - JOUR
AU  - V. S. Balaganskii
TI  - On Antiproximal Closed Radially Bounded Convex Sets in the $l_1$-Space
JO  - Matematičeskie zametki
PY  - 2008
SP  - 785
EP  - 787
VL  - 84
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2008_84_5_a14/
LA  - ru
ID  - MZM_2008_84_5_a14
ER  - 
%0 Journal Article
%A V. S. Balaganskii
%T On Antiproximal Closed Radially Bounded Convex Sets in the $l_1$-Space
%J Matematičeskie zametki
%D 2008
%P 785-787
%V 84
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2008_84_5_a14/
%G ru
%F MZM_2008_84_5_a14
V. S. Balaganskii. On Antiproximal Closed Radially Bounded Convex Sets in the $l_1$-Space. Matematičeskie zametki, Tome 84 (2008) no. 5, pp. 785-787. http://geodesic.mathdoc.fr/item/MZM_2008_84_5_a14/