On Antiproximal Closed Radially Bounded Convex Sets in the $l_1$-Space
Matematičeskie zametki, Tome 84 (2008) no. 5, pp. 785-787
Cet article a éte moissonné depuis la source Math-Net.Ru
Mots-clés :
antiproximal set
Keywords: convex set, nearest point, Banach space, Borel measure, metrizable space, probability measure, locally convex space.
Keywords: convex set, nearest point, Banach space, Borel measure, metrizable space, probability measure, locally convex space.
@article{MZM_2008_84_5_a14,
author = {V. S. Balaganskii},
title = {On {Antiproximal} {Closed} {Radially} {Bounded} {Convex} {Sets} in the $l_1${-Space}},
journal = {Matemati\v{c}eskie zametki},
pages = {785--787},
year = {2008},
volume = {84},
number = {5},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2008_84_5_a14/}
}
V. S. Balaganskii. On Antiproximal Closed Radially Bounded Convex Sets in the $l_1$-Space. Matematičeskie zametki, Tome 84 (2008) no. 5, pp. 785-787. http://geodesic.mathdoc.fr/item/MZM_2008_84_5_a14/
[1] S. Cobzaş, Math. Balkanica, 4 (1974), 79–82 | MR | Zbl
[2] M. Edelstein, J. Approx. Theory, 18:1 (1976), 1–8 | DOI | MR | Zbl
[3] J. Borwein, Bull. Calcutta Math. Soc., 73:1 (1981), 5–8 | MR | Zbl
[4] V. S. Balaganskii, Matem. zametki, 60:5 (1996), 643–657 | MR | Zbl
[5] M. Edelstein, A. C. Thompson, Pacific J. Math., 40:3 (1972), 553–560 | MR | Zbl
[6] R. Felps, Lektsii o teoremakh Shoke, Mir, M., 1968 | MR | Zbl
[7] Kh. Shefer, Topologicheskie vektornye prostranstva, Mir, M., 1971 | MR | Zbl
[8] D. Distel, Geometriya banakhovykh prostranstv. Izbrannye glavy, Vischa shkola, Kiev, 1980 | MR | Zbl