On the Best Approximation by Trigonometric Polynomials on Convolution Classes of Analytic Periodic Functions
Matematičeskie zametki, Tome 84 (2008) no. 5, pp. 755-762.

Voir la notice de l'article provenant de la source Math-Net.Ru

For a continuous $2\pi$-periodic real-valued function $K(t)$, whose amplitudes decrease as a geometric progression with a denominator $q\in(0,1)$ starting from a given number $n\in\mathbb{N}$, we find sharp upper bounds for $q$ ensuring that $K(t)$ satisfies the Nagy condition $N_n^*$.
Keywords: best approximation, $2\pi$-periodic analytic function, trigonometric polynomial, geometric progression, Nagy condition.
Mots-clés : convolution class
@article{MZM_2008_84_5_a10,
     author = {A. V. Pokrovskii},
     title = {On the {Best} {Approximation} by {Trigonometric} {Polynomials} on {Convolution} {Classes} of {Analytic} {Periodic} {Functions}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {755--762},
     publisher = {mathdoc},
     volume = {84},
     number = {5},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2008_84_5_a10/}
}
TY  - JOUR
AU  - A. V. Pokrovskii
TI  - On the Best Approximation by Trigonometric Polynomials on Convolution Classes of Analytic Periodic Functions
JO  - Matematičeskie zametki
PY  - 2008
SP  - 755
EP  - 762
VL  - 84
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2008_84_5_a10/
LA  - ru
ID  - MZM_2008_84_5_a10
ER  - 
%0 Journal Article
%A A. V. Pokrovskii
%T On the Best Approximation by Trigonometric Polynomials on Convolution Classes of Analytic Periodic Functions
%J Matematičeskie zametki
%D 2008
%P 755-762
%V 84
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2008_84_5_a10/
%G ru
%F MZM_2008_84_5_a10
A. V. Pokrovskii. On the Best Approximation by Trigonometric Polynomials on Convolution Classes of Analytic Periodic Functions. Matematičeskie zametki, Tome 84 (2008) no. 5, pp. 755-762. http://geodesic.mathdoc.fr/item/MZM_2008_84_5_a10/

[1] Sun Yun-Shen, “O nailuchshem priblizhenii periodicheskikh differentsiruemykh funktsii trigonometricheskimi polinomami”, Izv. AN SSSR. Ser. matem., 23 (1959), 67–92 | MR | Zbl

[2] V. K. Dzyadyk, “O nailuchshem priblizhenii na klassakh periodicheskikh funktsii, opredelyaemykh yadrami, yavlyayuschimisya integralami ot absolyutno monotonnykh funktsii”, Izv. AN SSSR. Ser. matem., 23 (1959), 933–950 | Zbl

[3] S. B. Stechkin, “O nailuchshem priblizhenii nekotorykh klassov periodicheskikh funktsii trigonometricheskimi polinomami”, Izv. AN SSSR. Ser. matem., 20 (1956), 643–648 | MR | Zbl

[4] N. P. Korneichuk, Ekstremalnye zadachi teorii priblizheniya, Nauka, M., 1976 | MR

[5] A. S. Serdyuk, “Naikraschi nablizhennya i poperechniki klasiv zgortok periodichnikh funktsii visokoï gladkosti”, Ukr. matem. zhurn., 57:7 (2005), 946–971 | MR | Zbl

[6] N. I. Akhiezer, Lektsii po teorii approksimatsii, Nauka, M., 1965 | MR | Zbl