On the Best Approximation by Trigonometric Polynomials on Convolution Classes of Analytic Periodic Functions
Matematičeskie zametki, Tome 84 (2008) no. 5, pp. 755-762
Voir la notice de l'article provenant de la source Math-Net.Ru
For a continuous $2\pi$-periodic real-valued function $K(t)$, whose amplitudes decrease as a geometric progression with a denominator $q\in(0,1)$ starting from a given number $n\in\mathbb{N}$, we find sharp upper bounds for $q$ ensuring that $K(t)$ satisfies the Nagy condition $N_n^*$.
Keywords:
best approximation, $2\pi$-periodic analytic function, trigonometric polynomial, geometric progression, Nagy condition.
Mots-clés : convolution class
Mots-clés : convolution class
@article{MZM_2008_84_5_a10,
author = {A. V. Pokrovskii},
title = {On the {Best} {Approximation} by {Trigonometric} {Polynomials} on {Convolution} {Classes} of {Analytic} {Periodic} {Functions}},
journal = {Matemati\v{c}eskie zametki},
pages = {755--762},
publisher = {mathdoc},
volume = {84},
number = {5},
year = {2008},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2008_84_5_a10/}
}
TY - JOUR AU - A. V. Pokrovskii TI - On the Best Approximation by Trigonometric Polynomials on Convolution Classes of Analytic Periodic Functions JO - Matematičeskie zametki PY - 2008 SP - 755 EP - 762 VL - 84 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2008_84_5_a10/ LA - ru ID - MZM_2008_84_5_a10 ER -
A. V. Pokrovskii. On the Best Approximation by Trigonometric Polynomials on Convolution Classes of Analytic Periodic Functions. Matematičeskie zametki, Tome 84 (2008) no. 5, pp. 755-762. http://geodesic.mathdoc.fr/item/MZM_2008_84_5_a10/