Hyperspace of Max-Plus Convex Compact Sets
Matematičeskie zametki, Tome 84 (2008) no. 5, pp. 658-666

Voir la notice de l'article provenant de la source Math-Net.Ru

The hyperspace $\operatorname{mpcc}(\mathbb R^n)$ of max-plus convex compact subsets of $\mathbb R^n$, $n\ge2$, is considered. The main result is as follows: this hyperspace is a contractible manifold modeled on the Hilbert cube $Q$. It is also shown that the projection mapping $\operatorname{mpcc}(\mathbb R^n) \to\operatorname{mpcc}(\mathbb R^m)$, $n\ge m$, is open. Moreover, it is proved that the hyperspace $\operatorname{mpcc}(I^{\omega_1})$ of the Tikhonov [Tychonoff] cube $I^{\omega_1}$ is homeomorphic to $I^{\omega_1}$.
Keywords: compact convex set, max-plus convexity, contractible manifold, topological linear space, Hilbert cube, Tikhonov cube, separable metric space.
Mots-clés : retract
@article{MZM_2008_84_5_a1,
     author = {L. E. Bazilevich},
     title = {Hyperspace of {Max-Plus} {Convex} {Compact} {Sets}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {658--666},
     publisher = {mathdoc},
     volume = {84},
     number = {5},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2008_84_5_a1/}
}
TY  - JOUR
AU  - L. E. Bazilevich
TI  - Hyperspace of Max-Plus Convex Compact Sets
JO  - Matematičeskie zametki
PY  - 2008
SP  - 658
EP  - 666
VL  - 84
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2008_84_5_a1/
LA  - ru
ID  - MZM_2008_84_5_a1
ER  - 
%0 Journal Article
%A L. E. Bazilevich
%T Hyperspace of Max-Plus Convex Compact Sets
%J Matematičeskie zametki
%D 2008
%P 658-666
%V 84
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2008_84_5_a1/
%G ru
%F MZM_2008_84_5_a1
L. E. Bazilevich. Hyperspace of Max-Plus Convex Compact Sets. Matematičeskie zametki, Tome 84 (2008) no. 5, pp. 658-666. http://geodesic.mathdoc.fr/item/MZM_2008_84_5_a1/