Hyperspace of Max-Plus Convex Compact Sets
Matematičeskie zametki, Tome 84 (2008) no. 5, pp. 658-666
Voir la notice de l'article provenant de la source Math-Net.Ru
The hyperspace $\operatorname{mpcc}(\mathbb R^n)$ of max-plus convex compact subsets of $\mathbb R^n$, $n\ge2$, is considered. The main result is as follows: this hyperspace is a contractible manifold modeled on the Hilbert cube $Q$. It is also shown that the projection mapping $\operatorname{mpcc}(\mathbb R^n) \to\operatorname{mpcc}(\mathbb R^m)$, $n\ge m$, is open. Moreover, it is proved that the hyperspace $\operatorname{mpcc}(I^{\omega_1})$ of the Tikhonov [Tychonoff] cube $I^{\omega_1}$ is homeomorphic to $I^{\omega_1}$.
Keywords:
compact convex set, max-plus convexity, contractible manifold, topological linear space, Hilbert cube, Tikhonov cube, separable metric space.
Mots-clés : retract
Mots-clés : retract
@article{MZM_2008_84_5_a1,
author = {L. E. Bazilevich},
title = {Hyperspace of {Max-Plus} {Convex} {Compact} {Sets}},
journal = {Matemati\v{c}eskie zametki},
pages = {658--666},
publisher = {mathdoc},
volume = {84},
number = {5},
year = {2008},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2008_84_5_a1/}
}
L. E. Bazilevich. Hyperspace of Max-Plus Convex Compact Sets. Matematičeskie zametki, Tome 84 (2008) no. 5, pp. 658-666. http://geodesic.mathdoc.fr/item/MZM_2008_84_5_a1/