Isometric Lagrangian Immersion of Horocycles of the Hyperbolic Plane in Complex Space
Matematičeskie zametki, Tome 84 (2008) no. 4, pp. 577-582
Voir la notice de l'article provenant de la source Math-Net.Ru
We prove that there exists an isometric Lagrangian immersion of a horocycle of the hyperbolic plane in the complex space $\mathbb C^2$, and there exists an isometric Lagrangian immersion of a horoball of hyperbolic (Lobachevski) space $H^3$ in the complex space $\mathbb C^3$.
Keywords:
hyperbolic plane, hyperbolic (Lobachevski) space, horoball, Lagrangian submanifold, Lagrangian immersion, Gauss–Codazzi–Ricci equations, Riemann connection, fiber bundle.
Mots-clés : horocycle
Mots-clés : horocycle
@article{MZM_2008_84_4_a8,
author = {L. A. Masal'tsev},
title = {Isometric {Lagrangian} {Immersion} of {Horocycles} of the {Hyperbolic} {Plane} in {Complex} {Space}},
journal = {Matemati\v{c}eskie zametki},
pages = {577--582},
publisher = {mathdoc},
volume = {84},
number = {4},
year = {2008},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2008_84_4_a8/}
}
L. A. Masal'tsev. Isometric Lagrangian Immersion of Horocycles of the Hyperbolic Plane in Complex Space. Matematičeskie zametki, Tome 84 (2008) no. 4, pp. 577-582. http://geodesic.mathdoc.fr/item/MZM_2008_84_4_a8/