Isometric Lagrangian Immersion of Horocycles of the Hyperbolic Plane in Complex Space
Matematičeskie zametki, Tome 84 (2008) no. 4, pp. 577-582

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove that there exists an isometric Lagrangian immersion of a horocycle of the hyperbolic plane in the complex space $\mathbb C^2$, and there exists an isometric Lagrangian immersion of a horoball of hyperbolic (Lobachevski) space $H^3$ in the complex space $\mathbb C^3$.
Keywords: hyperbolic plane, hyperbolic (Lobachevski) space, horoball, Lagrangian submanifold, Lagrangian immersion, Gauss–Codazzi–Ricci equations, Riemann connection, fiber bundle.
Mots-clés : horocycle
@article{MZM_2008_84_4_a8,
     author = {L. A. Masal'tsev},
     title = {Isometric {Lagrangian} {Immersion} of {Horocycles} of the {Hyperbolic} {Plane} in {Complex} {Space}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {577--582},
     publisher = {mathdoc},
     volume = {84},
     number = {4},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2008_84_4_a8/}
}
TY  - JOUR
AU  - L. A. Masal'tsev
TI  - Isometric Lagrangian Immersion of Horocycles of the Hyperbolic Plane in Complex Space
JO  - Matematičeskie zametki
PY  - 2008
SP  - 577
EP  - 582
VL  - 84
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2008_84_4_a8/
LA  - ru
ID  - MZM_2008_84_4_a8
ER  - 
%0 Journal Article
%A L. A. Masal'tsev
%T Isometric Lagrangian Immersion of Horocycles of the Hyperbolic Plane in Complex Space
%J Matematičeskie zametki
%D 2008
%P 577-582
%V 84
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2008_84_4_a8/
%G ru
%F MZM_2008_84_4_a8
L. A. Masal'tsev. Isometric Lagrangian Immersion of Horocycles of the Hyperbolic Plane in Complex Space. Matematičeskie zametki, Tome 84 (2008) no. 4, pp. 577-582. http://geodesic.mathdoc.fr/item/MZM_2008_84_4_a8/