On Automorphisms of a Generalized Octagon of Order $(2,4)$
Matematičeskie zametki, Tome 84 (2008) no. 4, pp. 516-526.

Voir la notice de l'article provenant de la source Math-Net.Ru

Possible orders and fixed-point subgraphs of automorphisms of a generalized octagon of order $(2,4)$ are found. The vertex-symmetric generalized octagon of order $(2,4)$ is proved to be classical.
Keywords: nonoriented graph, distance-regular graph, subgraph, generalized $n$-gon, finite simple group, Chevalley group, geodesic path, adjacency matrix.
Mots-clés : Tits group
@article{MZM_2008_84_4_a3,
     author = {I. N. Belousov and A. A. Makhnev},
     title = {On {Automorphisms} of a {Generalized} {Octagon} of {Order} $(2,4)$},
     journal = {Matemati\v{c}eskie zametki},
     pages = {516--526},
     publisher = {mathdoc},
     volume = {84},
     number = {4},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2008_84_4_a3/}
}
TY  - JOUR
AU  - I. N. Belousov
AU  - A. A. Makhnev
TI  - On Automorphisms of a Generalized Octagon of Order $(2,4)$
JO  - Matematičeskie zametki
PY  - 2008
SP  - 516
EP  - 526
VL  - 84
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2008_84_4_a3/
LA  - ru
ID  - MZM_2008_84_4_a3
ER  - 
%0 Journal Article
%A I. N. Belousov
%A A. A. Makhnev
%T On Automorphisms of a Generalized Octagon of Order $(2,4)$
%J Matematičeskie zametki
%D 2008
%P 516-526
%V 84
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2008_84_4_a3/
%G ru
%F MZM_2008_84_4_a3
I. N. Belousov; A. A. Makhnev. On Automorphisms of a Generalized Octagon of Order $(2,4)$. Matematičeskie zametki, Tome 84 (2008) no. 4, pp. 516-526. http://geodesic.mathdoc.fr/item/MZM_2008_84_4_a3/

[1] P. J. Cameron, Permutation Groups, London Math. Soc. Stud. Texts, 45, Cambridge, Cambridge Univ. Press, 1999 | MR | Zbl

[2] A. A. Makhnev, D. V. Paduchikh, “Ob avtomorfizmakh grafa Ashbakhera”, Algebra i logika, 40:2 (2001), 125–134 | MR | Zbl

[3] A. A. Makhnev, V. V. Nosov, “Ob avtomorfizmakh silno regulyarnykh grafov s $\lambda=0$, $\mu=2$”, Matem. sb., 195:3 (2004), 47–68 | MR | Zbl

[4] A. A. Makhnev, I. M. Minakova, “Ob avtomorfizmakh grafov s $\lambda=1$, $\mu=2$”, Diskret. matem., 16:1 (2004), 95–104 | MR | Zbl

[5] A. E. Brouwer, A. M. Cohen, A. Neumaier, Distance-Regular Graphs, Ergeb. Math. Grenzgeb. (3), 18, Springer-Verlag, Berlin–Heidelberg–New York, 1989 | MR | Zbl

[6] P. J. Cameron, J. van Lint, Designs, Graphs, Codes and Their Links, London Math. Soc. Stud. Texts, 22, Cambridge, Cambridge Univ. Press, 1991 | MR | Zbl