Finite $\pi$-Solvable Groups Whose Maximal Subgroups Have the Hall Property
Matematičeskie zametki, Tome 84 (2008) no. 3, pp. 390-394
Cet article a éte moissonné depuis la source Math-Net.Ru
Properties of an arbitrary finite $\pi$-solvable group whose maximal subgroups are Hall subgroups are established.
Keywords:
maximal subgroup, Hall subgroup, Frattini subgroup, Fitting subgroup, Sylow subgroup, dispersive group, metacyclic group.
Mots-clés : supersolvable group
Mots-clés : supersolvable group
@article{MZM_2008_84_3_a5,
author = {V. S. Monakhov},
title = {Finite $\pi${-Solvable} {Groups} {Whose} {Maximal} {Subgroups} {Have} the {Hall} {Property}},
journal = {Matemati\v{c}eskie zametki},
pages = {390--394},
year = {2008},
volume = {84},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2008_84_3_a5/}
}
V. S. Monakhov. Finite $\pi$-Solvable Groups Whose Maximal Subgroups Have the Hall Property. Matematičeskie zametki, Tome 84 (2008) no. 3, pp. 390-394. http://geodesic.mathdoc.fr/item/MZM_2008_84_3_a5/
[1] V. M. Levchuk, A. G. Likharev, “Konechnye prostye gruppy s dopolnyaemymi maksimalnymi podgruppami”, Sib. matem. zhurn., 47:4 (2006), 798–810 | MR | Zbl
[2] V. N. Tyutyanov, “Konechnye gruppy s dopolnyaemymi podgruppami”, Izv. Gomelskogo gos. un-ta im. F. Skoriny, 6 (2006), 178–183
[3] S. A. Chunikhin, Podgruppy konechnykh grupp, Nauka i tekhnika, Minsk, 1964 | MR
[4] B. Huppert, Endliche Gruppen, I, Grundlehren Math. Wiss., 134, Springer-Verlag, Berlin–Heidelberg–New York, 1967 | MR | Zbl