Change of the Ray Propagation Mode in Smoothly Irregular Waveguides
Matematičeskie zametki, Tome 84 (2008) no. 3, pp. 348-364.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the ray propagation path in a plane smoothly irregular waveguide. The following two modes of ray propagation are possible: with reflections and without reflections from the waveguide walls. In each of these modes, the problem has an adiabatic invariant. We obtain an asymptotic formula for the value of the adiabatic invariant jump as the propagation mode changes.
Keywords: geometrical optics, plane irregular waveguide, separatrix, quasi-random jump.
Mots-clés : ray propagation, adiabatic invariant, action variable
@article{MZM_2008_84_3_a2,
     author = {I. V. Gorelyshev and A. I. Neishtadt},
     title = {Change of the {Ray} {Propagation} {Mode} in {Smoothly} {Irregular} {Waveguides}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {348--364},
     publisher = {mathdoc},
     volume = {84},
     number = {3},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2008_84_3_a2/}
}
TY  - JOUR
AU  - I. V. Gorelyshev
AU  - A. I. Neishtadt
TI  - Change of the Ray Propagation Mode in Smoothly Irregular Waveguides
JO  - Matematičeskie zametki
PY  - 2008
SP  - 348
EP  - 364
VL  - 84
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2008_84_3_a2/
LA  - ru
ID  - MZM_2008_84_3_a2
ER  - 
%0 Journal Article
%A I. V. Gorelyshev
%A A. I. Neishtadt
%T Change of the Ray Propagation Mode in Smoothly Irregular Waveguides
%J Matematičeskie zametki
%D 2008
%P 348-364
%V 84
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2008_84_3_a2/
%G ru
%F MZM_2008_84_3_a2
I. V. Gorelyshev; A. I. Neishtadt. Change of the Ray Propagation Mode in Smoothly Irregular Waveguides. Matematičeskie zametki, Tome 84 (2008) no. 3, pp. 348-364. http://geodesic.mathdoc.fr/item/MZM_2008_84_3_a2/

[1] Yu. A. Kravtsov, Yu. I. Orlov, Geometricheskaya optika neodnorodnykh sred, Nauka, M., 1980 | MR

[2] V. I. Arnold, V. V. Kozlov, A. I. Neishtadt, Matematicheskie aspekty klassicheskoi i nebesnoi mekhaniki, Editorial URSS, M., 2002 | MR | Zbl

[3] I. V. Gorelyshev, A. I. Neishtadt, “Ob adiabaticheskoi teorii vozmuschenii dlya sistem s uprugimi otrazheniyami”, PMM, 70:1 (2006), 4–17 | MR | Zbl

[4] A. B. Timofeev, “K voprosu o postoyanstve adiabaticheskogo invarianta pri izmenenii kharaktera dvizheniya”, ZhETF, 75:4 (1978), 1303–1308

[5] A. I. Neishtadt, “Ob izmenenii adiabaticheskogo invarianta pri perekhode cherez separatrisu”, Fizika plazmy, 12:8 (1986), 992–1000

[6] J. R. Cary, D. F. Escande, J. L. Tennyson, “Adiabatic-invariant change due to separatrix crossing”, Phys. Rev. A, 34:5 (1986), 4256–4275 | DOI

[7] A. I. Neishtadt, “Ob izmenenii adiabaticheskogo invarianta pri perekhode cherez separatrisu v sistemakh s dvumya stepenyami svobody”, PMM, 51:5 (1987), 750–757 | MR | Zbl

[8] I. V. Gorelyshev, A. I. Neishtadt, “Jump in adiabatic invariant at a transition between modes of motion for systems with impacts”, Nonlinearity, 21 (2008), 661–676 | DOI | Zbl

[9] E. T. Uitteker, Dzh. N. Vatson, Kurs sovremennogo analiza, URSS, M., 2006 | MR | Zbl

[10] I. M. Lifshits, A. A. Slutskin, V. M. Nabutovskii, “Ob osobennostyakh dvizheniya zaryazhennykh kvazichastits v peremennom i neodnorodnom elektromagnitnom pole”, ZhETF, 41:3 (1961), 939–948 | MR | Zbl

[11] V. I. Arnold, “Malye znamenateli i problemy ustoichivosti dvizheniya v klassicheskoi i nebesnoi mekhanike”, UMN, 18:6 (1963), 91–192 | MR | Zbl

[12] A. I. Neishtadt, A. A. Vasiliev, “Phase change between separatrix crossings in slow-fast Hamiltonian systems”, Nonlinearity, 18:3 (2005), 1393–1406 | DOI | MR | Zbl

[13] J. R. Cary, R. T. Skodje, “Phase change between separatrix crossings”, Phys. D, 36:3 (1989), 287–316 | DOI | MR | Zbl