On the Freiman Theorem in Finite Fields
Matematičeskie zametki, Tome 84 (2008) no. 3, pp. 472-474.

Voir la notice de l'article provenant de la source Math-Net.Ru

Keywords: Freiman theorem, set addition, finite field, Abelian group, Hamming metric, arithmetic progression, doubling constant.
@article{MZM_2008_84_3_a12,
     author = {S. V. Konyagin},
     title = {On the {Freiman} {Theorem} in {Finite} {Fields}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {472--474},
     publisher = {mathdoc},
     volume = {84},
     number = {3},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2008_84_3_a12/}
}
TY  - JOUR
AU  - S. V. Konyagin
TI  - On the Freiman Theorem in Finite Fields
JO  - Matematičeskie zametki
PY  - 2008
SP  - 472
EP  - 474
VL  - 84
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2008_84_3_a12/
LA  - ru
ID  - MZM_2008_84_3_a12
ER  - 
%0 Journal Article
%A S. V. Konyagin
%T On the Freiman Theorem in Finite Fields
%J Matematičeskie zametki
%D 2008
%P 472-474
%V 84
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2008_84_3_a12/
%G ru
%F MZM_2008_84_3_a12
S. V. Konyagin. On the Freiman Theorem in Finite Fields. Matematičeskie zametki, Tome 84 (2008) no. 3, pp. 472-474. http://geodesic.mathdoc.fr/item/MZM_2008_84_3_a12/

[1] G. A. Freiman, Osnovaniya strukturnoi teorii slozheniya mnozhestv, Kazanskii gos. ped. in-t, Kazan, 1966 | MR | Zbl

[2] I. Ruzsa, Structure Theory of Set Addition, Astérisque, 258, Soc. Math. France, Paris, 1999, 323–326 | MR | Zbl

[3] J. M. Deshoulliers, F. Hennecart, A. Plagne, Combinatorica, 24:1 (2004), 53–68 | DOI | MR | Zbl

[4] B. J. Green, I. Z. Ruzsa, Bull. London Math. Soc., 38:1 (2006), 43–52 | DOI | MR | Zbl

[5] T. Sanders, A note of Freiman's theorem in vector spaces, arXiv: math/0605523

[6] B. Green, T. Tao, Freiman's theorem in finite fields via extremal set theory, arXiv: math/0703668