Minimizing Coincidence in Positive Codimension
Matematičeskie zametki, Tome 84 (2008) no. 3, pp. 440-451

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $f$ and $g$ be maps between smooth manifolds $M$ and $N$ of dimensions $n+m$ and $n$, respectively (where $m>0$ and $n>2$). Suppose that the image $(fxg)(M)$ intersects the diagonal $N\times N$ in finitely many points, whose preimages are smooth $m$-submanifolds in $M$. The problem of minimizing the coincidence set $\operatorname{Coin}(f,g)$ of the maps $f$ and $g$ with respect to these preimages and/or their components is considered. The author's earlier results are strengthened. Namely, sufficient conditions under which such a coincidence $m$-submanifold can be removed without additional dimensional constraints are obtained.
Keywords: Nielsen theory, coincidence set of two maps, minimization by homotopy, oriented manifold, Morse function, collar neighborhood, normal bundle.
Mots-clés : bordism
@article{MZM_2008_84_3_a10,
     author = {T. N. Fomenko},
     title = {Minimizing {Coincidence} in {Positive} {Codimension}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {440--451},
     publisher = {mathdoc},
     volume = {84},
     number = {3},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2008_84_3_a10/}
}
TY  - JOUR
AU  - T. N. Fomenko
TI  - Minimizing Coincidence in Positive Codimension
JO  - Matematičeskie zametki
PY  - 2008
SP  - 440
EP  - 451
VL  - 84
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2008_84_3_a10/
LA  - ru
ID  - MZM_2008_84_3_a10
ER  - 
%0 Journal Article
%A T. N. Fomenko
%T Minimizing Coincidence in Positive Codimension
%J Matematičeskie zametki
%D 2008
%P 440-451
%V 84
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2008_84_3_a10/
%G ru
%F MZM_2008_84_3_a10
T. N. Fomenko. Minimizing Coincidence in Positive Codimension. Matematičeskie zametki, Tome 84 (2008) no. 3, pp. 440-451. http://geodesic.mathdoc.fr/item/MZM_2008_84_3_a10/