Minimizing Coincidence in Positive Codimension
Matematičeskie zametki, Tome 84 (2008) no. 3, pp. 440-451.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $f$ and $g$ be maps between smooth manifolds $M$ and $N$ of dimensions $n+m$ and $n$, respectively (where $m>0$ and $n>2$). Suppose that the image $(fxg)(M)$ intersects the diagonal $N\times N$ in finitely many points, whose preimages are smooth $m$-submanifolds in $M$. The problem of minimizing the coincidence set $\operatorname{Coin}(f,g)$ of the maps $f$ and $g$ with respect to these preimages and/or their components is considered. The author's earlier results are strengthened. Namely, sufficient conditions under which such a coincidence $m$-submanifold can be removed without additional dimensional constraints are obtained.
Keywords: Nielsen theory, coincidence set of two maps, minimization by homotopy, oriented manifold, Morse function, collar neighborhood, normal bundle.
Mots-clés : bordism
@article{MZM_2008_84_3_a10,
     author = {T. N. Fomenko},
     title = {Minimizing {Coincidence} in {Positive} {Codimension}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {440--451},
     publisher = {mathdoc},
     volume = {84},
     number = {3},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2008_84_3_a10/}
}
TY  - JOUR
AU  - T. N. Fomenko
TI  - Minimizing Coincidence in Positive Codimension
JO  - Matematičeskie zametki
PY  - 2008
SP  - 440
EP  - 451
VL  - 84
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2008_84_3_a10/
LA  - ru
ID  - MZM_2008_84_3_a10
ER  - 
%0 Journal Article
%A T. N. Fomenko
%T Minimizing Coincidence in Positive Codimension
%J Matematičeskie zametki
%D 2008
%P 440-451
%V 84
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2008_84_3_a10/
%G ru
%F MZM_2008_84_3_a10
T. N. Fomenko. Minimizing Coincidence in Positive Codimension. Matematičeskie zametki, Tome 84 (2008) no. 3, pp. 440-451. http://geodesic.mathdoc.fr/item/MZM_2008_84_3_a10/

[1] B. Jiang, Lectures on Nielsen Fixed Point Theory, Contemp. Math., 14, Amer. Math. Soc., Providence, RI, 1983 | MR | Zbl

[2] B. Jiang, “On the least number of fixed points”, Amer. J. Math., 102:4 (1980), 749–763 | DOI | MR | Zbl

[3] H. Schirmer, “A relative Nielsen number”, Pacific J. Math., 122:2 (1986), 459–473 | MR | Zbl

[4] H. Schirmer, “On the location of fixed points on pairs of spaces”, Topology Appl., 30:3 (1988), 253–266 | DOI | MR | Zbl

[5] X. Zhao, “A relative Nielsen number for the complement”, Topological Fixed Point Theory and Applications (Tianjin, 1988), Lect Notes in Math., 1411, Springer-Verlag, Berlin, 1989, 189–199 | DOI | MR | Zbl

[6] P. Wong, “Equivariant Nielsen numbers”, Pacific J. Math., 159:1 (1993), 153–175 | MR

[7] T. N. Fomenko, “O naimenshem chisle nepodvizhnykh tochek ekvivariantnogo otobrazheniya”, Matem. zametki, 69:1 (2001), 100–112 | MR | Zbl

[8] R. F. Brown, H. Schirmer, “Nielsen theory of roots of maps of pairs”, Topology Appl., 92:3 (1999), 247–274 | DOI | MR | Zbl

[9] R. Brooks, P. Wong, “On Changing Fixed Points and Coincidences to Roots”, Proc. Amer. Math. Soc., 115:2 (1992), 527–533 | DOI | MR | Zbl

[10] R. Dobreńko, Z. Kucharski, “On the generalization of the Nielsen number”, Fund. Math., 134:1 (1990), 1–14 | MR | Zbl

[11] S. A. Bogatyi, D. L. Gonsalves, Kh. Tsishang, “Teoriya sovpadeniya: problema minimizatsii”, Solitony, geometriya, topologiya – na perekrestkakh, Tr. MIAN, 225, 1999, 52–86 | MR | Zbl

[12] P. Wong, “Homotopy theory in Nielsen coincidence theory”, Proc. of Int. Conf. on Homotopy Theory and Nielsen Fixed Point Theory (April 10, 2000,), Institute of Science and Technology, Korea University, Seoul, 2001, 69–77

[13] D. L. Gonçalves, P. N.-S. Wong, “Nilmanifolds are Jiang-type spaces for coincidence”, Forum Math., 1, 13, 2001, 133–141 | DOI | MR | Zbl

[14] R. Dobreńko, J. Jezierski, “The coincidence nielsen number in non-orientable manifolds”, Rocky Mountain J. Math., 23:1 (1993), 67–85 | DOI | MR | Zbl

[15] J. Guo, Ph. R. Heath, “Coincidence theory on the complement”, Topology Appl., 95:3 (1999), 229–250 | DOI | MR | Zbl

[16] J. Guo, Ph. R. Heath, “Equivariant coincidence Nielsen numbers”, Topology Appl., 128:2–3 (2003), 277–308 | DOI | MR | Zbl

[17] J. Jezierski, “The Relative coincidence Nielsen number”, Fund. Math., 149:1 (1996), 1–18 | MR | Zbl

[18] Chan Gyu Jang, Sik Lee, “A relative Nielsen Number in coincidence theory”, J. Korean Math. Soc., 32:2 (1995), 171–181 | MR | Zbl

[19] O. D. Frolkina, Obobschennaya zadacha proobraza, Dis. ...kand. fiz.-matem. nauk, M., MGU, 2006

[20] D. Gonçalves, P. Wong, “Obstruction theory and coincidences of maps between nilmanifolds”, Arch. Math. (Basel), 84:6 (2005), 568–576 | DOI | MR | Zbl

[21] D. Gonçalves, J. Jezierski, P. Wong, Obstruction Theory and Coincidences in Positive Codimension, preprint, Bates College, 2002

[22] P. Saveliev, “Higher order Nielsen Numbers”, Fixed Point Theory Appl., 2005, no. 1, 47–66 | DOI | MR | Zbl

[23] P. Saveliev, “Removing coincidences of maps between manifolds of different dimensions”, Topol. Methods Nonlinear Anal., 22:1 (2003), 105–113 | MR | Zbl

[24] U. Koschorke, “Nielsen coincidence theory in arbitrary codimensions”, J. Reine Angew. Math., 598 (2006), 211–236 | MR | Zbl

[25] U. Koschorke, Nonstabilized Nielsen Coincidence Invariants and Hopf–Ganea Homomorphisms, preprint, Siegen, 2005

[26] U. Koschorke, “Geometric and homotopy theoretic methods in Nielsen coincidence theory”, art. ID 84093, Fixed Point Theory Appl., Special Issue (2006), 15 pp. | MR | Zbl

[27] U. Koschorke, “Coincidence theory in arbitrary codimensions: the minimizing problem”, Oberwolfach Rep., 1:4 (2004), 2342–2344 | MR | Zbl

[28] U. Koschorke, Coincidence Free Pairs of Maps, preprint, Siegen, 2006

[29] T. N. Fomenko, “Nielsen type invariants and the location of coincidence sets in positive codimentions”, Topology and its Appl. (to appear)

[30] T. N. Fomenko, “O probleme lokalizatsii i minimizatsii sovpadenii pary otobrazhenii v polozhitelnoi korazmernosti”, Tezisy dokladov Mezhdunarodnoi Konferentsii “Aleksandrovskie chteniya–2006” (30 maya–2 iyunya 2006), M., MGU, 61

[31] T. N. Fomenko, “Nielsen type invariants and the location of the coincidence sets for a pair of mappings in positive codimension”, 2006 International Conference on Topology and its Applications (June 23–26, 2006, Aegion, Greece), Municipal Library of Aegion, Aegion, 67–68

[32] A. T. Fomenko, D. B. Fuks, Kurs gomotopicheskoi topologii, Nauka, M., 1989 | MR | Zbl