Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2008_84_3_a10, author = {T. N. Fomenko}, title = {Minimizing {Coincidence} in {Positive} {Codimension}}, journal = {Matemati\v{c}eskie zametki}, pages = {440--451}, publisher = {mathdoc}, volume = {84}, number = {3}, year = {2008}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2008_84_3_a10/} }
T. N. Fomenko. Minimizing Coincidence in Positive Codimension. Matematičeskie zametki, Tome 84 (2008) no. 3, pp. 440-451. http://geodesic.mathdoc.fr/item/MZM_2008_84_3_a10/
[1] B. Jiang, Lectures on Nielsen Fixed Point Theory, Contemp. Math., 14, Amer. Math. Soc., Providence, RI, 1983 | MR | Zbl
[2] B. Jiang, “On the least number of fixed points”, Amer. J. Math., 102:4 (1980), 749–763 | DOI | MR | Zbl
[3] H. Schirmer, “A relative Nielsen number”, Pacific J. Math., 122:2 (1986), 459–473 | MR | Zbl
[4] H. Schirmer, “On the location of fixed points on pairs of spaces”, Topology Appl., 30:3 (1988), 253–266 | DOI | MR | Zbl
[5] X. Zhao, “A relative Nielsen number for the complement”, Topological Fixed Point Theory and Applications (Tianjin, 1988), Lect Notes in Math., 1411, Springer-Verlag, Berlin, 1989, 189–199 | DOI | MR | Zbl
[6] P. Wong, “Equivariant Nielsen numbers”, Pacific J. Math., 159:1 (1993), 153–175 | MR
[7] T. N. Fomenko, “O naimenshem chisle nepodvizhnykh tochek ekvivariantnogo otobrazheniya”, Matem. zametki, 69:1 (2001), 100–112 | MR | Zbl
[8] R. F. Brown, H. Schirmer, “Nielsen theory of roots of maps of pairs”, Topology Appl., 92:3 (1999), 247–274 | DOI | MR | Zbl
[9] R. Brooks, P. Wong, “On Changing Fixed Points and Coincidences to Roots”, Proc. Amer. Math. Soc., 115:2 (1992), 527–533 | DOI | MR | Zbl
[10] R. Dobreńko, Z. Kucharski, “On the generalization of the Nielsen number”, Fund. Math., 134:1 (1990), 1–14 | MR | Zbl
[11] S. A. Bogatyi, D. L. Gonsalves, Kh. Tsishang, “Teoriya sovpadeniya: problema minimizatsii”, Solitony, geometriya, topologiya – na perekrestkakh, Tr. MIAN, 225, 1999, 52–86 | MR | Zbl
[12] P. Wong, “Homotopy theory in Nielsen coincidence theory”, Proc. of Int. Conf. on Homotopy Theory and Nielsen Fixed Point Theory (April 10, 2000,), Institute of Science and Technology, Korea University, Seoul, 2001, 69–77
[13] D. L. Gonçalves, P. N.-S. Wong, “Nilmanifolds are Jiang-type spaces for coincidence”, Forum Math., 1, 13, 2001, 133–141 | DOI | MR | Zbl
[14] R. Dobreńko, J. Jezierski, “The coincidence nielsen number in non-orientable manifolds”, Rocky Mountain J. Math., 23:1 (1993), 67–85 | DOI | MR | Zbl
[15] J. Guo, Ph. R. Heath, “Coincidence theory on the complement”, Topology Appl., 95:3 (1999), 229–250 | DOI | MR | Zbl
[16] J. Guo, Ph. R. Heath, “Equivariant coincidence Nielsen numbers”, Topology Appl., 128:2–3 (2003), 277–308 | DOI | MR | Zbl
[17] J. Jezierski, “The Relative coincidence Nielsen number”, Fund. Math., 149:1 (1996), 1–18 | MR | Zbl
[18] Chan Gyu Jang, Sik Lee, “A relative Nielsen Number in coincidence theory”, J. Korean Math. Soc., 32:2 (1995), 171–181 | MR | Zbl
[19] O. D. Frolkina, Obobschennaya zadacha proobraza, Dis. ...kand. fiz.-matem. nauk, M., MGU, 2006
[20] D. Gonçalves, P. Wong, “Obstruction theory and coincidences of maps between nilmanifolds”, Arch. Math. (Basel), 84:6 (2005), 568–576 | DOI | MR | Zbl
[21] D. Gonçalves, J. Jezierski, P. Wong, Obstruction Theory and Coincidences in Positive Codimension, preprint, Bates College, 2002
[22] P. Saveliev, “Higher order Nielsen Numbers”, Fixed Point Theory Appl., 2005, no. 1, 47–66 | DOI | MR | Zbl
[23] P. Saveliev, “Removing coincidences of maps between manifolds of different dimensions”, Topol. Methods Nonlinear Anal., 22:1 (2003), 105–113 | MR | Zbl
[24] U. Koschorke, “Nielsen coincidence theory in arbitrary codimensions”, J. Reine Angew. Math., 598 (2006), 211–236 | MR | Zbl
[25] U. Koschorke, Nonstabilized Nielsen Coincidence Invariants and Hopf–Ganea Homomorphisms, preprint, Siegen, 2005
[26] U. Koschorke, “Geometric and homotopy theoretic methods in Nielsen coincidence theory”, art. ID 84093, Fixed Point Theory Appl., Special Issue (2006), 15 pp. | MR | Zbl
[27] U. Koschorke, “Coincidence theory in arbitrary codimensions: the minimizing problem”, Oberwolfach Rep., 1:4 (2004), 2342–2344 | MR | Zbl
[28] U. Koschorke, Coincidence Free Pairs of Maps, preprint, Siegen, 2006
[29] T. N. Fomenko, “Nielsen type invariants and the location of coincidence sets in positive codimentions”, Topology and its Appl. (to appear)
[30] T. N. Fomenko, “O probleme lokalizatsii i minimizatsii sovpadenii pary otobrazhenii v polozhitelnoi korazmernosti”, Tezisy dokladov Mezhdunarodnoi Konferentsii “Aleksandrovskie chteniya–2006” (30 maya–2 iyunya 2006), M., MGU, 61
[31] T. N. Fomenko, “Nielsen type invariants and the location of the coincidence sets for a pair of mappings in positive codimension”, 2006 International Conference on Topology and its Applications (June 23–26, 2006, Aegion, Greece), Municipal Library of Aegion, Aegion, 67–68
[32] A. T. Fomenko, D. B. Fuks, Kurs gomotopicheskoi topologii, Nauka, M., 1989 | MR | Zbl