Weak Generalized Localization for Multiple Fourier Series Whose Rectangular Partial Sums Are Considered with Respect to Some Subsequence
Matematičeskie zametki, Tome 84 (2008) no. 3, pp. 334-347
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper, we obtain the structural and geometric characteristics of some subsets of $\mathbb{T}^N=[-\pi,\pi]^N$ (of positive measure), on which, for the classes $L_p(\mathbb{T}^N)$, $p>1$, where $N\ge 3$, weak generalized localization for multiple trigonometric Fourier series is valid almost everywhere, provided that the rectangular partial sums $S_n(x;f)$ ($x\in\mathbb{T}^N$, $f\in L_p$) of these series have a “number” $n=(n_1,\dots,n_N)\in\mathbb Z_{+}^{N}$ such that some components $n_j$ are elements of lacunary sequences. For $N=3$, similar studies are carried out for generalized localization almost everywhere.
Keywords:
multiple Fourier series, weak generalized localization, generalized localization, partial sum, lacunary sequence, Hölder's inequality, Orlicz class.
@article{MZM_2008_84_3_a1,
author = {I. L. Bloshanskii and O. V. Lifantseva},
title = {Weak {Generalized} {Localization} for {Multiple} {Fourier} {Series} {Whose} {Rectangular} {Partial} {Sums} {Are} {Considered} with {Respect} to {Some} {Subsequence}},
journal = {Matemati\v{c}eskie zametki},
pages = {334--347},
publisher = {mathdoc},
volume = {84},
number = {3},
year = {2008},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2008_84_3_a1/}
}
TY - JOUR AU - I. L. Bloshanskii AU - O. V. Lifantseva TI - Weak Generalized Localization for Multiple Fourier Series Whose Rectangular Partial Sums Are Considered with Respect to Some Subsequence JO - Matematičeskie zametki PY - 2008 SP - 334 EP - 347 VL - 84 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2008_84_3_a1/ LA - ru ID - MZM_2008_84_3_a1 ER -
%0 Journal Article %A I. L. Bloshanskii %A O. V. Lifantseva %T Weak Generalized Localization for Multiple Fourier Series Whose Rectangular Partial Sums Are Considered with Respect to Some Subsequence %J Matematičeskie zametki %D 2008 %P 334-347 %V 84 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/MZM_2008_84_3_a1/ %G ru %F MZM_2008_84_3_a1
I. L. Bloshanskii; O. V. Lifantseva. Weak Generalized Localization for Multiple Fourier Series Whose Rectangular Partial Sums Are Considered with Respect to Some Subsequence. Matematičeskie zametki, Tome 84 (2008) no. 3, pp. 334-347. http://geodesic.mathdoc.fr/item/MZM_2008_84_3_a1/