Weak Generalized Localization for Multiple Fourier Series Whose Rectangular Partial Sums Are Considered with Respect to Some Subsequence
Matematičeskie zametki, Tome 84 (2008) no. 3, pp. 334-347

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we obtain the structural and geometric characteristics of some subsets of $\mathbb{T}^N=[-\pi,\pi]^N$ (of positive measure), on which, for the classes $L_p(\mathbb{T}^N)$, $p>1$, where $N\ge 3$, weak generalized localization for multiple trigonometric Fourier series is valid almost everywhere, provided that the rectangular partial sums $S_n(x;f)$  ($x\in\mathbb{T}^N$, $f\in L_p$) of these series have a “number” $n=(n_1,\dots,n_N)\in\mathbb Z_{+}^{N}$ such that some components $n_j$ are elements of lacunary sequences. For $N=3$, similar studies are carried out for generalized localization almost everywhere.
Keywords: multiple Fourier series, weak generalized localization, generalized localization, partial sum, lacunary sequence, Hölder's inequality, Orlicz class.
@article{MZM_2008_84_3_a1,
     author = {I. L. Bloshanskii and O. V. Lifantseva},
     title = {Weak {Generalized} {Localization} for {Multiple} {Fourier} {Series} {Whose} {Rectangular} {Partial} {Sums} {Are} {Considered} with {Respect} to {Some} {Subsequence}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {334--347},
     publisher = {mathdoc},
     volume = {84},
     number = {3},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2008_84_3_a1/}
}
TY  - JOUR
AU  - I. L. Bloshanskii
AU  - O. V. Lifantseva
TI  - Weak Generalized Localization for Multiple Fourier Series Whose Rectangular Partial Sums Are Considered with Respect to Some Subsequence
JO  - Matematičeskie zametki
PY  - 2008
SP  - 334
EP  - 347
VL  - 84
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2008_84_3_a1/
LA  - ru
ID  - MZM_2008_84_3_a1
ER  - 
%0 Journal Article
%A I. L. Bloshanskii
%A O. V. Lifantseva
%T Weak Generalized Localization for Multiple Fourier Series Whose Rectangular Partial Sums Are Considered with Respect to Some Subsequence
%J Matematičeskie zametki
%D 2008
%P 334-347
%V 84
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2008_84_3_a1/
%G ru
%F MZM_2008_84_3_a1
I. L. Bloshanskii; O. V. Lifantseva. Weak Generalized Localization for Multiple Fourier Series Whose Rectangular Partial Sums Are Considered with Respect to Some Subsequence. Matematičeskie zametki, Tome 84 (2008) no. 3, pp. 334-347. http://geodesic.mathdoc.fr/item/MZM_2008_84_3_a1/