Weak Generalized Localization for Multiple Fourier Series Whose Rectangular Partial Sums Are Considered with Respect to Some Subsequence
Matematičeskie zametki, Tome 84 (2008) no. 3, pp. 334-347.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we obtain the structural and geometric characteristics of some subsets of $\mathbb{T}^N=[-\pi,\pi]^N$ (of positive measure), on which, for the classes $L_p(\mathbb{T}^N)$, $p>1$, where $N\ge 3$, weak generalized localization for multiple trigonometric Fourier series is valid almost everywhere, provided that the rectangular partial sums $S_n(x;f)$  ($x\in\mathbb{T}^N$, $f\in L_p$) of these series have a “number” $n=(n_1,\dots,n_N)\in\mathbb Z_{+}^{N}$ such that some components $n_j$ are elements of lacunary sequences. For $N=3$, similar studies are carried out for generalized localization almost everywhere.
Keywords: multiple Fourier series, weak generalized localization, generalized localization, partial sum, lacunary sequence, Hölder's inequality, Orlicz class.
@article{MZM_2008_84_3_a1,
     author = {I. L. Bloshanskii and O. V. Lifantseva},
     title = {Weak {Generalized} {Localization} for {Multiple} {Fourier} {Series} {Whose} {Rectangular} {Partial} {Sums} {Are} {Considered} with {Respect} to {Some} {Subsequence}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {334--347},
     publisher = {mathdoc},
     volume = {84},
     number = {3},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2008_84_3_a1/}
}
TY  - JOUR
AU  - I. L. Bloshanskii
AU  - O. V. Lifantseva
TI  - Weak Generalized Localization for Multiple Fourier Series Whose Rectangular Partial Sums Are Considered with Respect to Some Subsequence
JO  - Matematičeskie zametki
PY  - 2008
SP  - 334
EP  - 347
VL  - 84
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2008_84_3_a1/
LA  - ru
ID  - MZM_2008_84_3_a1
ER  - 
%0 Journal Article
%A I. L. Bloshanskii
%A O. V. Lifantseva
%T Weak Generalized Localization for Multiple Fourier Series Whose Rectangular Partial Sums Are Considered with Respect to Some Subsequence
%J Matematičeskie zametki
%D 2008
%P 334-347
%V 84
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2008_84_3_a1/
%G ru
%F MZM_2008_84_3_a1
I. L. Bloshanskii; O. V. Lifantseva. Weak Generalized Localization for Multiple Fourier Series Whose Rectangular Partial Sums Are Considered with Respect to Some Subsequence. Matematičeskie zametki, Tome 84 (2008) no. 3, pp. 334-347. http://geodesic.mathdoc.fr/item/MZM_2008_84_3_a1/

[1] L. Carleson, “On convergence and growth of partial sums of Fourier series”, Acta Math., 116:1 (1966), 135–157 | DOI | MR | Zbl

[2] R. Hunt, “On the convergence of Fourier series”, Proc. Conf., Edwardsville, Ill., 1967, Southern Illinois Univ. Press, Carbondale, Ill., 1968, 235–255 | MR

[3] A. N. Kolmogorov, “Une serie de Fourier–Lebesgue divergente partout”, Compt. Rend. Acad. Sci., Paris, 183 (1926), 1327–1329

[4] C. Fefferman, “On the divergence of multiple Fourier series”, Bull. Amer. Math. Soc., 77:2 (1971), 191–195 | DOI | MR | Zbl

[5] A. N. Kolmogorov, “Une contribution à l'étude de la convergence des séries de Fourier”, Fund. Math., 5 (1924), 96–97

[6] J. Littlewood, R. Paley, “Theorems on Fourier series and power series”, Studia Math., 1 (1929), 87–121

[7] V. Totik, “On the divergence of Fourier series”, Publ. Math. Debrecen, 29:3–4 (1982), 251–264 | MR | Zbl

[8] P. L. Ulyanov, “A. N. Kolmogorov i raskhodyaschiesya ryady Fure”, UMN, 38:4 (1983), 51–90 | MR | Zbl

[9] P. Sjölin, “Convergence almost everywhere of certain singular integrals and multiple Fourier series”, Ark. Mat., 9:1 (1971), 65–90 | DOI | MR | Zbl

[10] D. K. Sanadze, Sh. V. Kheladze, “O skhodimosti i raskhodimosti kratnykh ryadov Fure–Uolsha”, Tr. Tbilissk. matem. in-ta AN GSSR, 55 (1977), 93–106 | MR | Zbl

[11] L. V. Zhizhiashvili, “O skhodimosti i raskhodimosti trigonometricheskikh ryadov Fure”, Dokl. AN SSSR, 225:3 (1975), 495–496 | MR | Zbl

[12] M. Kojima, “On the almost everywhere convergence of rectangular partial sums of multiple Fourier series”, Sci. Rep. Kanazava Univ., 22:2 (1977), 163–177 | MR | Zbl

[13] L. V. Zhizhiashvili, Nekotorye voprosy mnogomernogo garmonicheskogo analiza, Izd-vo Tbilissk. un-ta, 2005 | MR | Zbl

[14] I. L. Bloshanskii, “Ravnoskhodimost razlozhenii v kratnyi trigonometricheskii ryad Fure i integral Fure”, Matem. zametki, 18:2 (1975), 153–168 | MR | Zbl

[15] I. L. Bloshanskii, “Obobschennaya lokalizatsiya pochti vsyudu i skhodimost dvoinykh ryadov Fure”, Dokl. AN SSSR, 242:1 (1978), 11–13 | MR | Zbl

[16] I. L. Bloshanskii, “O kriteriyakh slaboi obobschennoi lokalizatsii v $N$-mernom prostranstve”, Dokl. AN SSSR, 271:6 (1983), 1294–1298 | MR | Zbl

[17] I. L. Bloshanskii, “Dva kriteriya slaboi obobschennoi lokalizatsii dlya kratnykh trigonometricheskikh ryadov Fure funktsii iz $L_p$, $p\ge1$,”, Izv. AN SSSR. Ser. matem., 49:2 (1985), 243–282 | MR | Zbl

[18] I. L. Bloshanskii, “O geometrii izmerimykh mnozhestv v $N$-mernom prostranstve, na kotorykh spravedliva obobschennaya lokalizatsiya dlya kratnykh trigonometricheskikh ryadov Fure funktsii iz $L_p$, $p>1$”, Matem. sb., 121:1 (1983), 87–110 | MR | Zbl

[19] I. L. Bloshanskii, “O maksimalnykh mnozhestvakh skhodimosti i neogranichennoi raskhodimosti kratnykh ryadov Fure funktsii iz $L_1$, ravnykh nulyu na dannom mnozhestve”, Dokl. AN SSSR, 283:5 (1985), 1040–1044 | MR | Zbl

[20] I. L. Bloshanskii, O. N. Ivanova, “Slabaya obobschennaya lokalizatsiya dlya trigonometricheskikh ryadov Fure funktsii iz klassov Orlicha”, Sovremennye problemy teorii funktsii i ikh prilozheniya, Tez. dokl. 12-i Sarat. zimnei shk. (Saratov, 27 apr.– 3 fevr. 2004 g.), Izd-vo GosUNTs “Kolledzh”, Saratov, 2004, 28–29

[21] I. L. Bloshanskii, “Struktura i geometriya maksimalnykh mnozhestv skhodimosti i neogranichennoi raskhodimosti pochti vsyudu kratnykh ryadov Fure funktsii iz $L_1$, ravnykh nulyu na dannom mnozhestve”, Izv. AN SSSR. Ser. matem., 53:4 (1989), 675–707 | MR | Zbl

[22] I. L. Bloshanskii, T. A. Matseevich, “Slabaya obobschennaya lokalizatsiya dlya kratnykh ryadov Fure nepreryvnykh funktsii s nekotorym modulem nepreryvnosti”, Metricheskaya teoriya funktsii i smezhnye voprosy analiza, Sb. statei, Izd-vo AFTs, M., 1999, 37–56 | MR

[23] I. L. Bloshanskii, “Structural and geometric characteritics of sets of convergence and divergence of multiple Fourier series of functions which equal zero on some set”, Int. J. Wavelets Multiresolut. Inf. Process., 2:2 (2004), 187–195 | DOI | MR | Zbl