On a Series of Problems Related to the Borsuk and Nelson--Erd\H os--Hadwiger Problems
Matematičeskie zametki, Tome 84 (2008) no. 2, pp. 254-272
Voir la notice de l'article provenant de la source Math-Net.Ru
In the present paper, a series of problems connecting the Borsuk and Nelson–Erdős–Hadwiger classical problems in combinatorial geometry is considered. The problem has to do with finding the number $\chi(n,a,d)$
equal to the minimal number of colors needed to color an arbitrary set of diameter $d$ in $n$-dimensional Euclidean space in such a way that the distance between points of the same color cannot be equal to $a$. Some new lower bounds for the quantity $\chi(n,a,d)$ are obtained.
Keywords:
Borsuk problem, Nelson–Erdős–Hadwiger problem, chromatic number, Stirling formula, infinite graph, Euclidean space, distribution of primes.
@article{MZM_2008_84_2_a7,
author = {A. M. Raigorodskii and M. M. Kityaev},
title = {On a {Series} of {Problems} {Related} to the {Borsuk} and {Nelson--Erd\H} {os--Hadwiger} {Problems}},
journal = {Matemati\v{c}eskie zametki},
pages = {254--272},
publisher = {mathdoc},
volume = {84},
number = {2},
year = {2008},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2008_84_2_a7/}
}
TY - JOUR AU - A. M. Raigorodskii AU - M. M. Kityaev TI - On a Series of Problems Related to the Borsuk and Nelson--Erd\H os--Hadwiger Problems JO - Matematičeskie zametki PY - 2008 SP - 254 EP - 272 VL - 84 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2008_84_2_a7/ LA - ru ID - MZM_2008_84_2_a7 ER -
A. M. Raigorodskii; M. M. Kityaev. On a Series of Problems Related to the Borsuk and Nelson--Erd\H os--Hadwiger Problems. Matematičeskie zametki, Tome 84 (2008) no. 2, pp. 254-272. http://geodesic.mathdoc.fr/item/MZM_2008_84_2_a7/