On Almost Representations of Groups with Property (T)
Matematičeskie zametki, Tome 84 (2008) no. 2, pp. 219-230
Voir la notice de l'article provenant de la source Math-Net.Ru
Kazhdan's property (T) for groups is equivalent to the alternative that a representation of such a group either has an invariant vector or does not have even almost invariant vectors. It is shown that, under a somewhat stronger condition due to Żuk, a similar alternative holds for almost representations.
Keywords:
group representation, almost representation, Kazhdan's property (T) for groups, Kazhdan constant, group $C^*$-algebra, Hilbert space, linear operator.
Mots-clés : Żuk's condition
Mots-clés : Żuk's condition
@article{MZM_2008_84_2_a4,
author = {V. M. Manuilov and Yu. Chao},
title = {On {Almost} {Representations} of {Groups} with {Property} {(T)}},
journal = {Matemati\v{c}eskie zametki},
pages = {219--230},
publisher = {mathdoc},
volume = {84},
number = {2},
year = {2008},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2008_84_2_a4/}
}
V. M. Manuilov; Yu. Chao. On Almost Representations of Groups with Property (T). Matematičeskie zametki, Tome 84 (2008) no. 2, pp. 219-230. http://geodesic.mathdoc.fr/item/MZM_2008_84_2_a4/