Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2008_84_2_a4, author = {V. M. Manuilov and Yu. Chao}, title = {On {Almost} {Representations} of {Groups} with {Property} {(T)}}, journal = {Matemati\v{c}eskie zametki}, pages = {219--230}, publisher = {mathdoc}, volume = {84}, number = {2}, year = {2008}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2008_84_2_a4/} }
V. M. Manuilov; Yu. Chao. On Almost Representations of Groups with Property (T). Matematičeskie zametki, Tome 84 (2008) no. 2, pp. 219-230. http://geodesic.mathdoc.fr/item/MZM_2008_84_2_a4/
[1] P. de la Harpe, A. Valette, “La propriété (T) de Kazhdan pour les groupes localment compacts”, Astérisque, 175, Soc. Math. France, Paris, 1989 | MR | Zbl
[2] P. de la Harpe, A. G. Robertson, A. Valette, “On the spectrum of the sum of generators for a finitely generated group”, Israel J. Math., 81:1–2 (1993), 65–96 | DOI | MR | Zbl
[3] A. Valette, “Minimal projections, integrable representations and property (T)”, Arch. Math. (Basel), 43:5 (1984), 397–406 | DOI | MR | Zbl
[4] A. Connes, M. Gromov, H. Moscovici, “Conjecture de Novikov et fibrés presque plats”, C. R. Acad. Sci. Paris Sér. I Math., 310:5 (1990), 273–277 | MR | Zbl
[5] V. M. Manuilov, A. S. Mishchenko, “Almost, asymptotic and Fredholm representations of discrete groups”, Acta Appl. Math., 68:1–3 (2001), 159–210 | DOI | MR | Zbl
[6] D. Voiculescu, “Asymptotically commuting finite rank unitary operators without commuting approximants”, Acta Sci. Math. (Szeged), 45:1–4 (1983), 429–431 | MR | Zbl
[7] A. I. Shtern, “Kvazipredstavleniya i psevdopredstavleniya”, Funkts. analiz i ego pril., 25:2 (1991), 70–73 | MR | Zbl
[8] D. Fisher, G. Margulis, “Almost isometric actions, property (T), and local rigidity”, Invent. Math., 162:1 (2005), 19–80 | DOI | MR | Zbl
[9] V. M. Manuilov, “Pochti predstavleniya i asimptoticheskie predstavleniya diskretnykh grupp”, Izv. RAN. Ser. matem., 63:5 (1999), 159–178 | MR | Zbl
[10] A. .{Z}uk, “Property (T) and Kazhdan constants for discrete groups”, Geom. Funct. Anal., 13:3 (2003), 643–670 | DOI | MR | Zbl