On Almost Representations of Groups with Property (T)
Matematičeskie zametki, Tome 84 (2008) no. 2, pp. 219-230.

Voir la notice de l'article provenant de la source Math-Net.Ru

Kazhdan's property (T) for groups is equivalent to the alternative that a representation of such a group either has an invariant vector or does not have even almost invariant vectors. It is shown that, under a somewhat stronger condition due to Żuk, a similar alternative holds for almost representations.
Keywords: group representation, almost representation, Kazhdan's property (T) for groups, Kazhdan constant, group $C^*$-algebra, Hilbert space, linear operator.
Mots-clés : Żuk's condition
@article{MZM_2008_84_2_a4,
     author = {V. M. Manuilov and Yu. Chao},
     title = {On {Almost} {Representations} of {Groups} with {Property} {(T)}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {219--230},
     publisher = {mathdoc},
     volume = {84},
     number = {2},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2008_84_2_a4/}
}
TY  - JOUR
AU  - V. M. Manuilov
AU  - Yu. Chao
TI  - On Almost Representations of Groups with Property (T)
JO  - Matematičeskie zametki
PY  - 2008
SP  - 219
EP  - 230
VL  - 84
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2008_84_2_a4/
LA  - ru
ID  - MZM_2008_84_2_a4
ER  - 
%0 Journal Article
%A V. M. Manuilov
%A Yu. Chao
%T On Almost Representations of Groups with Property (T)
%J Matematičeskie zametki
%D 2008
%P 219-230
%V 84
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2008_84_2_a4/
%G ru
%F MZM_2008_84_2_a4
V. M. Manuilov; Yu. Chao. On Almost Representations of Groups with Property (T). Matematičeskie zametki, Tome 84 (2008) no. 2, pp. 219-230. http://geodesic.mathdoc.fr/item/MZM_2008_84_2_a4/

[1] P. de la Harpe, A. Valette, “La propriété (T) de Kazhdan pour les groupes localment compacts”, Astérisque, 175, Soc. Math. France, Paris, 1989 | MR | Zbl

[2] P. de la Harpe, A. G. Robertson, A. Valette, “On the spectrum of the sum of generators for a finitely generated group”, Israel J. Math., 81:1–2 (1993), 65–96 | DOI | MR | Zbl

[3] A. Valette, “Minimal projections, integrable representations and property (T)”, Arch. Math. (Basel), 43:5 (1984), 397–406 | DOI | MR | Zbl

[4] A. Connes, M. Gromov, H. Moscovici, “Conjecture de Novikov et fibrés presque plats”, C. R. Acad. Sci. Paris Sér. I Math., 310:5 (1990), 273–277 | MR | Zbl

[5] V. M. Manuilov, A. S. Mishchenko, “Almost, asymptotic and Fredholm representations of discrete groups”, Acta Appl. Math., 68:1–3 (2001), 159–210 | DOI | MR | Zbl

[6] D. Voiculescu, “Asymptotically commuting finite rank unitary operators without commuting approximants”, Acta Sci. Math. (Szeged), 45:1–4 (1983), 429–431 | MR | Zbl

[7] A. I. Shtern, “Kvazipredstavleniya i psevdopredstavleniya”, Funkts. analiz i ego pril., 25:2 (1991), 70–73 | MR | Zbl

[8] D. Fisher, G. Margulis, “Almost isometric actions, property (T), and local rigidity”, Invent. Math., 162:1 (2005), 19–80 | DOI | MR | Zbl

[9] V. M. Manuilov, “Pochti predstavleniya i asimptoticheskie predstavleniya diskretnykh grupp”, Izv. RAN. Ser. matem., 63:5 (1999), 159–178 | MR | Zbl

[10] A. .{Z}uk, “Property (T) and Kazhdan constants for discrete groups”, Geom. Funct. Anal., 13:3 (2003), 643–670 | DOI | MR | Zbl