Estimates for the Orders of Zeros of Polynomials in Some Analytic Functions
Matematičeskie zametki, Tome 84 (2008) no. 2, pp. 193-206.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the present paper, we consider estimates for the orders of zeros of polynomials in functions satisfying a system of algebraic differential equations and possessing a special $D$-property defined in the paper. The main result obtained in the paper consists of two theorems for the two cases in which these estimates are given. These estimates are improved versions of a similar estimate proved earlier in the case of algebraically independent functions and a single point. They are derived from a more general theorem concerning the estimates of absolute values of ideals in the ring of polynomials, and the proof of this theorem occupies the main part of the present paper. The proof is based on the theory of ideals in rings of polynomials. Such estimates may be used to prove the algebraic independence of the values of functions at algebraic points.
Keywords: ring of polynomials, simple ideal, homogenous ideal, algebraic independence, differential equation, analytic function, algebraic closure.
@article{MZM_2008_84_2_a2,
     author = {A. P. Dolgalev},
     title = {Estimates for the {Orders} of {Zeros} of {Polynomials} in {Some} {Analytic} {Functions}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {193--206},
     publisher = {mathdoc},
     volume = {84},
     number = {2},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2008_84_2_a2/}
}
TY  - JOUR
AU  - A. P. Dolgalev
TI  - Estimates for the Orders of Zeros of Polynomials in Some Analytic Functions
JO  - Matematičeskie zametki
PY  - 2008
SP  - 193
EP  - 206
VL  - 84
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2008_84_2_a2/
LA  - ru
ID  - MZM_2008_84_2_a2
ER  - 
%0 Journal Article
%A A. P. Dolgalev
%T Estimates for the Orders of Zeros of Polynomials in Some Analytic Functions
%J Matematičeskie zametki
%D 2008
%P 193-206
%V 84
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2008_84_2_a2/
%G ru
%F MZM_2008_84_2_a2
A. P. Dolgalev. Estimates for the Orders of Zeros of Polynomials in Some Analytic Functions. Matematičeskie zametki, Tome 84 (2008) no. 2, pp. 193-206. http://geodesic.mathdoc.fr/item/MZM_2008_84_2_a2/

[1] Yu. Nesterenko, Ph. Philippon, “Multiplicity estimates for solutions of algebraic differential equations”, Introduction to Algebraic Independence Theory, Lecture Notes in Math., 1752, Springer-Verlag, Berlin, 2001, 149–165 | DOI | MR | Zbl

[2] A. B. Shidlovskii, Transtsendentnye chisla, Nauka, M., 1987 | MR | Zbl

[3] Yu. V. Nesterenko, “O mere algebraicheskoi nezavisimosti znachenii ellipticheskoi funktsii”, Izv. RAN. Ser. matem., 1995:4, 155–178 | MR | Zbl

[4] Yu. V. Nesterenko, “Otsenki poryadka nulei analiticheskikh funktsii nekotorogo klassa i ikh prilozhenie v teorii transtsendentnykh chisel”, Dokl. AN SSSR, 205:2 (1972), 292–295 | MR | Zbl

[5] Yu. V. Nesterenko, “Otsenki poryadkov nulei funktsii odnogo klassa i ikh prilozhenie v teorii transtsendentnykh chisel”, Izv. AN SSSR. Ser. matem., 41:2 (1977), 253–284 | MR | Zbl

[6] W. D. Brownawell, D. W. Masser, “Multiplicity estimates for analytic functions. I”, J. Reine Angew. Math., 314 (1980), 200–216 | MR | Zbl

[7] Nguen Ten Tai, “Ob otsenkakh poryadkov nulei mnogochlenov ot analiticheskikh funktsii i ikh prilozhenii k otsenkam mer vzaimnoi transtsendentnosti znachenii $E$-funktsii”, Matem. sb., 120:1 (1983), 112–142 | MR | Zbl

[8] Yu. V. Nesterenko, “O mere algebraicheskoi nezavisimosti znachenii funktsii Ramanudzhana”, Tr. MIAN, 218 (1997), 299–334 | MR | Zbl

[9] Yu. V. Nesterenko, “Ob algebraicheskoi zavisimosti komponent reshenii sistemy lineinykh differentsialnykh uravnenii”, Izv. AN SSSR. Ser. matem., 38:3 (1974), 495–512 | MR | Zbl

[10] Yu. V. Nesterenko, “Otsenki chisla nulei funktsii nekotorykh klassov”, Acta Arith., 53:1 (1989), 29–46 | MR | Zbl

[11] O. Zarisskii, P. Samyuel, Kommutativnaya algebra, IL, M., 1963 | MR | MR | Zbl