Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2008_84_2_a10, author = {K. A. Shramov}, title = {Birational {Rigidity} and $\mathbb Q${-Factoriality} of a {Singular} {Double} {Cover} of a {Quadric} {Branched} over a {Divisor} of {Degree~4}}, journal = {Matemati\v{c}eskie zametki}, pages = {300--311}, publisher = {mathdoc}, volume = {84}, number = {2}, year = {2008}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2008_84_2_a10/} }
TY - JOUR AU - K. A. Shramov TI - Birational Rigidity and $\mathbb Q$-Factoriality of a Singular Double Cover of a Quadric Branched over a Divisor of Degree~4 JO - Matematičeskie zametki PY - 2008 SP - 300 EP - 311 VL - 84 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2008_84_2_a10/ LA - ru ID - MZM_2008_84_2_a10 ER -
%0 Journal Article %A K. A. Shramov %T Birational Rigidity and $\mathbb Q$-Factoriality of a Singular Double Cover of a Quadric Branched over a Divisor of Degree~4 %J Matematičeskie zametki %D 2008 %P 300-311 %V 84 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/MZM_2008_84_2_a10/ %G ru %F MZM_2008_84_2_a10
K. A. Shramov. Birational Rigidity and $\mathbb Q$-Factoriality of a Singular Double Cover of a Quadric Branched over a Divisor of Degree~4. Matematičeskie zametki, Tome 84 (2008) no. 2, pp. 300-311. http://geodesic.mathdoc.fr/item/MZM_2008_84_2_a10/
[1] K. Matsuki, Introduction to the Mori Program, Universitext, Springer-Verlag, New York, 2002 | MR | Zbl
[2] A. Corti, “Singularities of linear systems and 3-fold birational geometry”, Explicit birational geometry of $3$-folds, London Math. Soc. Lecture Note Ser., 281, Cambridge Univ. Press, Cambridge, 2000, 259–312 | MR | Zbl
[3] A. Pukhlikov, “Essentials of the method of maximal singularities”, Explicit birational geometry of $3$-folds, London Math. Soc. Lecture Note Ser., 281, Cambridge Univ. Press, Cambridge, 2000, 73–100 | MR | Zbl
[4] V. A. Iskovskikh, “Antikanonicheskie modeli trekhmernykh algebraicheskikh mnogoobrazii”, Itogi nauki i tekhniki. Sovrem. problemy matem., 12, VINITI, M., 1979, 59–157 | MR | Zbl
[5] V. A. Iskovskikh, Yu. I. Manin, “Trekhmernye kvartiki i kontrprimery k probleme Lyurota”, Matem. sb., 86:1 (1971), 140–166 | MR | Zbl
[6] V. A. Iskovskikh, “Biratsionalnye avtomorfizmy trekhmernykh algebraicheskikh mnogoobrazii”, Itogi nauki i tekhniki. Sovrem. problemy matem., 12, VINITI, M., 1979, 159–236 | MR | Zbl
[7] V. A. Iskovskikh, A. V. Pukhlikov, “Biratsionalnye avtomorfizmy mnogomernykh algebraicheskikh mnogoobrazii”, Itogi nauki i tekhniki. Sovrem. problemy matem., 19, VINITI, M., 2001, 5–139
[8] A. V. Pukhlikov, “Biratsionalnye avtomorfizmy trekhmernoi kvartiki s prosteishei osobennostyu”, Matem. sb., 135:4 (1988), 472–496 | MR | Zbl
[9] I. Cheltsov, J. Park, Sextic double solids, arXiv: math/0404452v2
[10] M. Mella, “Birational geometry of quartic 3-folds. II: The importance of being $\mathbb Q$-factorial”, Math. Ann., 330:1 (2004), 107–126 | DOI | MR | Zbl
[11] M. M. Grinenko, “Biratsionalnye avtomorfizmy trekhmernoi dvoinoi kvadriki s prosteishei osobennostyu”, Matem. sb., 189:1 (1998), 101–118 | MR | Zbl
[12] M. M. Grinenko,, “Biratsionalnye avtomorfizmy trekhmernogo dvoinogo konusa”, Matem. sb., 189:7 (1998), 37–52 | MR | Zbl
[13] I. Cheltsov, “Nonrational nodal quartic threefolds”, Pacific J. Math., 226:1 (2006), 65–81 | MR
[14] K. A. Shramov, “$\mathbb{Q}$-faktorialnye trekhmernye kvartiki”, Matem. sb., 198:8 (2007), 103–114 | MR
[15] I. A. Cheltsov, “Biratsionalno zhestkie mnogoobraziya Fano”, UMN, 60:5 (2005), 71–160 | MR
[16] I. Cheltsov, Points in projective spaces and applications, arXiv: math/0511578v8
[17] S. Cynk, “Defect of a nodal hypersurface”, Manuscripta Math., 104:3 (2001), 325–331 | DOI | MR | Zbl
[18] D. Eisenbud, J.-H. Koh, “Remarks on points in a projective space”, Commutative Algebra (Berkeley, CA, 1987), Math. Sci. Res. Inst. Publ., 15, Springer, New York, 1989, 157–172 | MR | Zbl