Birational Rigidity and $\mathbb Q$-Factoriality of a Singular Double Cover of a Quadric Branched over a Divisor of Degree~4
Matematičeskie zametki, Tome 84 (2008) no. 2, pp. 300-311

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove birational rigidity and calculate the group of birational automorphisms of a nodal $\mathbb Q$-factorial double cover $X$ of a smooth three-dimensional quadric branched over a quartic section. We also prove that $X$ is $\mathbb Q$-factorial provided that it has at most 11 singularities; moreover, we give an example of a non-$\mathbb Q$-factorial variety of this type with 12 simple double singularities.
Keywords: birational geometry, Mori fibration, birational rigidity, Fano variety, sextic, superrigidity.
Mots-clés : birational automorphism, quartic
@article{MZM_2008_84_2_a10,
     author = {K. A. Shramov},
     title = {Birational {Rigidity} and $\mathbb Q${-Factoriality} of a {Singular} {Double} {Cover} of a {Quadric}  {Branched} over a {Divisor} of {Degree~4}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {300--311},
     publisher = {mathdoc},
     volume = {84},
     number = {2},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2008_84_2_a10/}
}
TY  - JOUR
AU  - K. A. Shramov
TI  - Birational Rigidity and $\mathbb Q$-Factoriality of a Singular Double Cover of a Quadric  Branched over a Divisor of Degree~4
JO  - Matematičeskie zametki
PY  - 2008
SP  - 300
EP  - 311
VL  - 84
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2008_84_2_a10/
LA  - ru
ID  - MZM_2008_84_2_a10
ER  - 
%0 Journal Article
%A K. A. Shramov
%T Birational Rigidity and $\mathbb Q$-Factoriality of a Singular Double Cover of a Quadric  Branched over a Divisor of Degree~4
%J Matematičeskie zametki
%D 2008
%P 300-311
%V 84
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2008_84_2_a10/
%G ru
%F MZM_2008_84_2_a10
K. A. Shramov. Birational Rigidity and $\mathbb Q$-Factoriality of a Singular Double Cover of a Quadric  Branched over a Divisor of Degree~4. Matematičeskie zametki, Tome 84 (2008) no. 2, pp. 300-311. http://geodesic.mathdoc.fr/item/MZM_2008_84_2_a10/