Linear Relations as Generators of Semigroups of Operators
Matematičeskie zametki, Tome 84 (2008) no. 2, pp. 175-192 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The theory of semigroups of bounded linear operators is based on the spectral theory of linear relations (multivalued linear operators), which act as generators of operator semigroups.
Keywords: semigroup, bounded linear operator, linear relation (multivalued linear operator), spectral theory, primitive generator of a semigroup, resolvent set of a linear relation, ergodic theorem, holomorphic function.
@article{MZM_2008_84_2_a1,
     author = {A. G. Baskakov},
     title = {Linear {Relations} as {Generators} of {Semigroups} of {Operators}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {175--192},
     year = {2008},
     volume = {84},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2008_84_2_a1/}
}
TY  - JOUR
AU  - A. G. Baskakov
TI  - Linear Relations as Generators of Semigroups of Operators
JO  - Matematičeskie zametki
PY  - 2008
SP  - 175
EP  - 192
VL  - 84
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/MZM_2008_84_2_a1/
LA  - ru
ID  - MZM_2008_84_2_a1
ER  - 
%0 Journal Article
%A A. G. Baskakov
%T Linear Relations as Generators of Semigroups of Operators
%J Matematičeskie zametki
%D 2008
%P 175-192
%V 84
%N 2
%U http://geodesic.mathdoc.fr/item/MZM_2008_84_2_a1/
%G ru
%F MZM_2008_84_2_a1
A. G. Baskakov. Linear Relations as Generators of Semigroups of Operators. Matematičeskie zametki, Tome 84 (2008) no. 2, pp. 175-192. http://geodesic.mathdoc.fr/item/MZM_2008_84_2_a1/

[1] E. Khille, R. S. Fillips, Funktsionalnyi analiz i polugruppy, IL, M., 1962 | MR | Zbl

[2] K.-J. Engel, R. Nagel, One-Parameter Semigroups for Linear Evolution Equations, Grad. Texts in Math., 194, Springer-Verlag, New York, 2000 | MR | Zbl

[3] R. Cross, Multivalued Linear Operators, Monogr. Textbooks Pure Appl. Math., 213, Marcel Dekker, New York, 1998 | MR | Zbl

[4] A. Favini, A. Yagi, Degenerate Differential Equations in Banach Spaces, Monogr. Textbooks Pure Appl. Math., 215, Marcel Dekker, New York, 1999 | MR | Zbl

[5] A. G. Baskakov, K. I. Chernyshov, “Lineinye otnosheniya, differentsialnye vklyucheniya i vyrozhdennye polugruppy”, Funkts. analiz i ego pril., 36:4 (2002), 65–70 | MR | Zbl

[6] A. G. Baskakov, K. I. Chernyshov, “Spektralnaya teoriya lineinykh otnoshenii i vyrozhdennye polugruppy operatorov”, Matem. sb., 193:11 (2002), 3–42 | MR | Zbl

[7] R. Arens, “Operational calculus of linear relations”, Pacific J. Math., 11 (1961), 9–23 | MR | Zbl

[8] A. G. Baskakov, “Operatornye ergodicheskie teoremy i dopolnyaemye podprostranstva banakhovykh prostranstv”, Izv. vuzov. Matem., 1988, no. 11, 3–11 | MR | Zbl

[9] A. G. Baskakov, “Teoriya predstavlenii banakhovykh algebr, abelevykh grupp i polugrupp v spektralnom analize lineinykh operatorov”, SMFN, 9 (2004), 3–151 | MR | Zbl

[10] G. A. Sviridyuk, V. A. Fedorov, “Analiticheskie polugruppy s yadrami i lineinye uravneniya tipa Soboleva”, Sib. matem. zhurn., 36:5 (1995), 1130–1145 | MR | Zbl

[11] N. M. Gelfand, G. E. Shilov, Nekotorye voprosy teorii differentsialnykh uravnenii, Obobschennye funktsii, vyp. 3, Fizmatgiz, M., 1958 | MR | Zbl

[12] G. V. Demidenko, S. V. Uspenskii, Uravneniya i sistemy, ne razreshennye otnositelno starshei proizvodnoi, Nauchnaya kniga, Novosibirsk, 1998 | MR | Zbl

[13] N. E. Egorov, S. G. Pyatkov, S. V. Popov, Neklassicheskie differentsialno-operatornye uravneniya, Nauka, Novosibirsk, 2000 | MR | Zbl

[14] U. A. Anufrieva, I. V. Melnikova, “Osobennosti i regulyarizatsiya nekorrektnykh zadach Koshi s differentsialnymi operatorami”, SMFN, 14 (2005), 3–156 | MR | Zbl