Nonnegativity of Quadratic Forms on Intersections of Quadrics and Quadratic Maps
Matematičeskie zametki, Tome 84 (2008) no. 2, pp. 163-174.

Voir la notice de l'article provenant de la source Math-Net.Ru

The question of the nonnegativity of quadratic forms on intersections of quadratic cones is considered. An answer is given in terms of Lagrange multipliers of the quadratic forms under consideration.
Keywords: quadratic form, quadratic cone, quadratic map, regular zero of a quadratic function, abnormal point, bilinear map, Sard's theorem.
@article{MZM_2008_84_2_a0,
     author = {A. V. Arutyunov},
     title = {Nonnegativity of {Quadratic} {Forms} on {Intersections} of {Quadrics} and {Quadratic} {Maps}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {163--174},
     publisher = {mathdoc},
     volume = {84},
     number = {2},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2008_84_2_a0/}
}
TY  - JOUR
AU  - A. V. Arutyunov
TI  - Nonnegativity of Quadratic Forms on Intersections of Quadrics and Quadratic Maps
JO  - Matematičeskie zametki
PY  - 2008
SP  - 163
EP  - 174
VL  - 84
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2008_84_2_a0/
LA  - ru
ID  - MZM_2008_84_2_a0
ER  - 
%0 Journal Article
%A A. V. Arutyunov
%T Nonnegativity of Quadratic Forms on Intersections of Quadrics and Quadratic Maps
%J Matematičeskie zametki
%D 2008
%P 163-174
%V 84
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2008_84_2_a0/
%G ru
%F MZM_2008_84_2_a0
A. V. Arutyunov. Nonnegativity of Quadratic Forms on Intersections of Quadrics and Quadratic Maps. Matematičeskie zametki, Tome 84 (2008) no. 2, pp. 163-174. http://geodesic.mathdoc.fr/item/MZM_2008_84_2_a0/

[1] A. V. Arutyunov, “Polozhitelnost kvadratichnykh form na peresechenii kvadrik”, Matem. zametki, 71:1 (2002), 27–36 | MR | Zbl

[2] A. V. Arutyunov, Usloviya ekstremuma. Anormalnye i vyrozhdennye zadachi, Faktorial, M., 1997 | MR | Zbl

[3] A. A. Agrachev, “Topologiya kvadratichnykh otobrazhenii i gessiany gladkikh otobrazhenii”, Itogi nauki i tekhniki. Ser. Algebra. Topologiya. Geometriya, 26, VINITI, M., 1988, 85–124 | MR | Zbl

[4] B. T. Polyak, “Convexity of quadratic transformations and its use in control and optimization”, J. Optim. Theory Appl., 99:3 (1998), 553–583 | DOI | MR | Zbl

[5] A. S. Matveev, Kriterii vypuklosti obrazov kvadratichnykh otobrazhenii v teorii optimalnogo upravleniya sistemami, opisyvaemymi differentsialnymi uravneniyami, Dis. $\dots$ dokt. fiz.-matem. nauk, SPb., 1998

[6] A. V. Arutyunov, V. Yachimovich, “K teorii ekstremuma dlya anormalnykh zadach”, Vestn. Mosk. un-ta. Ser. 15. Vychislit. matem., kibernet., 2000, no. 1, 34–40 | MR | Zbl

[7] A. D. Ioffe, V. M. Tikhomirov, Teoriya ekstremalnykh zadach, Nauka, M., 1974 | MR | Zbl

[8] F. Klark, Optimizatsiya i negladkii analiz, Nauka, M., 1988 | MR | Zbl

[9] L. L. Dines, “On the mapping of quadratic forms”, Bull. Amer. Math. Soc., 47 (1941), 494–498 | DOI | MR | Zbl

[10] A. V. Arutyunov, D. Yu. Karamzin, “Neobkhodimye usloviya minimuma v anormalnykh zadachakh s geometricheskimi ogranicheniyami”, ZhVM i MF, 47:3 (2007), 364–375 | MR | Zbl