Detailed Balance, Time Reversal, and Generators of Quantum Markov Semigroups
Matematičeskie zametki, Tome 84 (2008) no. 1, pp. 108-116.

Voir la notice de l'article provenant de la source Math-Net.Ru

We characterize generators $\mathscr L$ of norm continuous quantum Markov semigroups satisfying the quantum detailed balance condition with respect to an antiunitary time reversal in terms of the operators $H$ and $L_k$ in the Gorini–Kossakowski–Sudarshan–Lindblad (GKSL) representation $\mathscr L(x)=i[H,x]-(1/2)\sum_k(L^*_kL_kx -2L^*_kxL_k+xL^*_kL_k)$.
Keywords: quantum detailed balance, time reversal, quantum Markov semigroup, Lindblad representation, antiunitary operator.
@article{MZM_2008_84_1_a7,
     author = {F. Fagnola and V. Umanita},
     title = {Detailed {Balance,} {Time} {Reversal,} and {Generators} of {Quantum} {Markov} {Semigroups}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {108--116},
     publisher = {mathdoc},
     volume = {84},
     number = {1},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2008_84_1_a7/}
}
TY  - JOUR
AU  - F. Fagnola
AU  - V. Umanita
TI  - Detailed Balance, Time Reversal, and Generators of Quantum Markov Semigroups
JO  - Matematičeskie zametki
PY  - 2008
SP  - 108
EP  - 116
VL  - 84
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2008_84_1_a7/
LA  - ru
ID  - MZM_2008_84_1_a7
ER  - 
%0 Journal Article
%A F. Fagnola
%A V. Umanita
%T Detailed Balance, Time Reversal, and Generators of Quantum Markov Semigroups
%J Matematičeskie zametki
%D 2008
%P 108-116
%V 84
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2008_84_1_a7/
%G ru
%F MZM_2008_84_1_a7
F. Fagnola; V. Umanita. Detailed Balance, Time Reversal, and Generators of Quantum Markov Semigroups. Matematičeskie zametki, Tome 84 (2008) no. 1, pp. 108-116. http://geodesic.mathdoc.fr/item/MZM_2008_84_1_a7/

[1] V. Gorini, A. Kossakowski, E. C. G. Sudarshan, “Completely positive dynamical semigroups of $N$-level systems”, J. Math. Phys., 17:5 (1976), 821–825 | DOI | MR

[2] G. Lindablad, “On the genarators of quantum dynamical semigroups”, Comm. Math. Phys., 48:2 (1976), 119–130 | DOI | MR | Zbl

[3] R. Alicki, “On the detailed balance condition for non-hamiltonian systems”, Rep. Math. Phys., 10:2 (1976), 249–258 | DOI | MR | Zbl

[4] R. Alicki, K. Lendi, Lecture Notes in Phys., 286, Springer-Verlag, Berlin, 1987 | MR | Zbl

[5] A. Frigerio, V. Gorini, “Markov dilations and quantum detailed balance”, Comm. Math. Phys., 93:4 (1984), 517–532 | DOI | MR | Zbl

[6] A. Kossakowski, A. Frigerio, V. Gorini, M. Verri, “Quantum detailed balance and KMS condition”, Comm. Math. Phys., 57:2 (1977), 97–110 | DOI | MR | Zbl

[7] F. Fagnola, V. Umanità, “Generators of detailed balance quantum Markov semigroups”, Infin. Dimens. Anal. Quantum Probab. Relat. Top., 10:3 (2007), 335–363 | DOI | MR

[8] W. A. Majewski, “On the relationship between the reversibility of detailed balance conditions”, Ann. Inst. H. Poincaré Sect. A (N.S.), 39:1 (1983), 45–54 | MR | Zbl

[9] W. A. Majewski, “The detailed balance condition in quantum statistical mechanics”, J. Math. Phys., 25:3 (1984), 614–616 | DOI | MR

[10] P. Talkner, “The failure of the quantum regression hypotesis”, Ann. Physics, 167:2 (1986), 390–436 | DOI | MR

[11] G. S. Agarwal, “Open quantum Markovian systems and the microreversibility”, Z. Physik, 258:5 (1973), 409–422 | DOI | MR

[12] L. Accardi, K. Imafuku, “Dynamical detailed balance and local KMS condition for non-equilibrium states”, Internat. J. Modern Phys. B, 18:4–5 (2004), 435–467 | DOI | MR | Zbl

[13] F. Fagnola, R. Quezada, “Two-Photon Absorption and Emission Process”, Infin. Dimens. Anal. Quantum Probab. Relat. Top., 8:4 (2005), 573–591 | DOI | MR | Zbl

[14] R. Carbone, F. Fagnola, S. Hachicha, “Generic quantum Markov semigroups: the Gaussian gauge invariant case”, Open Syst. Inf. Dyn., 14:4 (2007), 425–444 | DOI | Zbl

[15] L. Accardi, F. Fagnola, S. Hachicha, “Generic q-Markov semigroups and speed of convergence of $q$-algorithms”, Infin. Dimens. Anal. Quantum Probab. Relat. Top., 9:4 (2006), 567–594 | DOI | MR | Zbl

[16] K. R. Parthasarathy, An Introduction to Quantum Stochastic Calculus, Monogr. Math., 85, Birkhäuser-Verlag, Basel, 1992 | MR | Zbl

[17] S. Goldstein, J. M. Lindsay, “KMS-symmetric Markov semigroups”, Math. Z., 219:4 (1995), 591–608 | DOI | MR | Zbl

[18] F. Cipriani, “Dirichlet forms and Markovian semigroups on standard forms of von Neumann algebras”, J. Funct. Anal., 147:2 (1997), 259–300 | DOI | MR | Zbl

[19] L. Accardi, A. Mohari, “Time Reflected Markov Processes”, Infin. Dimens. Anal. Quantum Probab. Relat. Top., 2:3 (1999), 397–425 | DOI | MR | Zbl