Exact Lebesgue Constants for Interpolatory $\mathscr L$-Splines of Third Order
Matematičeskie zametki, Tome 84 (2008) no. 1, pp. 59-68.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we obtain the Lebesgue constants for interpolatory $\mathscr L$-splines of third order with uniform nodes, i.e., the norms of interpolation operators from $\mathrm C$ to $\mathrm C$ describing the process of interpolation of continuous bounded and continuous periodic functions by $\mathscr L$-splines of third order with uniform nodes on the real line. As a corollary, we obtain exact Lebesgue constants for interpolatory polynomial parabolic splines with uniform nodes.
Mots-clés : Lebesgue constant
Keywords: interpolatory $\mathscr L$-spline, $B$-spline, polynomial parabolic spline with uniform nodes, continuous bounded function, continuous periodic function.
@article{MZM_2008_84_1_a4,
     author = {V. A. Kim},
     title = {Exact {Lebesgue} {Constants} for {Interpolatory} $\mathscr L${-Splines} of {Third} {Order}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {59--68},
     publisher = {mathdoc},
     volume = {84},
     number = {1},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2008_84_1_a4/}
}
TY  - JOUR
AU  - V. A. Kim
TI  - Exact Lebesgue Constants for Interpolatory $\mathscr L$-Splines of Third Order
JO  - Matematičeskie zametki
PY  - 2008
SP  - 59
EP  - 68
VL  - 84
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2008_84_1_a4/
LA  - ru
ID  - MZM_2008_84_1_a4
ER  - 
%0 Journal Article
%A V. A. Kim
%T Exact Lebesgue Constants for Interpolatory $\mathscr L$-Splines of Third Order
%J Matematičeskie zametki
%D 2008
%P 59-68
%V 84
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2008_84_1_a4/
%G ru
%F MZM_2008_84_1_a4
V. A. Kim. Exact Lebesgue Constants for Interpolatory $\mathscr L$-Splines of Third Order. Matematičeskie zametki, Tome 84 (2008) no. 1, pp. 59-68. http://geodesic.mathdoc.fr/item/MZM_2008_84_1_a4/

[1] F. Schurer, E. W. Cheney, “On interpolating cubic splines with equally-spaced nodes”, Nederl. Akad. Wetensch. Proc. Ser. A, 71:5 (1968), 517–524 | MR | Zbl

[2] F. Richards, “The Lebesgue constants for cardinal spline interpolation”, J. Approximation Theory, 14:2 (1975), 83–92 | DOI | MR | Zbl

[3] Yu. N. Subbotin, S. A. Telyakovskii, “Asimptotika konstant Lebega periodicheskikh interpolyatsionnykh splainov s ravnootstoyaschimi uzlami”, Matem. sb., 191:8 (2000), 131–140 | MR | Zbl

[4] A. Sharma, I. Tsimbalario, “Nekotorye lineinye differentsialnye operatory i obobschennye raznosti”, Matem. zametki, 21:2 (1977), 161–172 | MR | Zbl

[5] S. B. Stechkin, Yu. N. Subbotin, Splainy v vychislitelnoi matematike, Nauka, M., 1976 | MR | Zbl