Exact Lebesgue Constants for Interpolatory $\mathscr L$-Splines of Third Order
Matematičeskie zametki, Tome 84 (2008) no. 1, pp. 59-68
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper, we obtain the Lebesgue constants for interpolatory $\mathscr L$-splines of third order with uniform nodes, i.e., the norms of interpolation operators from $\mathrm C$ to $\mathrm C$ describing the process of interpolation of continuous bounded and continuous periodic functions by $\mathscr L$-splines of third order with uniform nodes on the real line. As a corollary, we obtain exact Lebesgue constants for interpolatory polynomial parabolic splines with uniform nodes.
Mots-clés :
Lebesgue constant
Keywords: interpolatory $\mathscr L$-spline, $B$-spline, polynomial parabolic spline with uniform nodes, continuous bounded function, continuous periodic function.
Keywords: interpolatory $\mathscr L$-spline, $B$-spline, polynomial parabolic spline with uniform nodes, continuous bounded function, continuous periodic function.
@article{MZM_2008_84_1_a4,
author = {V. A. Kim},
title = {Exact {Lebesgue} {Constants} for {Interpolatory} $\mathscr L${-Splines} of {Third} {Order}},
journal = {Matemati\v{c}eskie zametki},
pages = {59--68},
publisher = {mathdoc},
volume = {84},
number = {1},
year = {2008},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2008_84_1_a4/}
}
V. A. Kim. Exact Lebesgue Constants for Interpolatory $\mathscr L$-Splines of Third Order. Matematičeskie zametki, Tome 84 (2008) no. 1, pp. 59-68. http://geodesic.mathdoc.fr/item/MZM_2008_84_1_a4/