The Unirationality of Quartics over Nonclosed Fields Revisited
Matematičeskie zametki, Tome 84 (2008) no. 1, pp. 40-47.

Voir la notice de l'article provenant de la source Math-Net.Ru

Examples of smooth fourth-degree hypersurfaces which are unirational over an algebraically nonclosed field $\Bbbk$ and contain no straight lines defined over $Bbbk$ are given. A method for proving the unirationality of quartics is suggested, which, unlike other methods, does not use linear spaces contained in the quartics.
Mots-clés : unirational quartic, birational projection.
Keywords: quartic over an algebraically nonclosed field, unirational variety, irreducible hypersurface, Plucker embedding
@article{MZM_2008_84_1_a2,
     author = {N. F. Zak},
     title = {The {Unirationality} of {Quartics} over {Nonclosed} {Fields} {Revisited}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {40--47},
     publisher = {mathdoc},
     volume = {84},
     number = {1},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2008_84_1_a2/}
}
TY  - JOUR
AU  - N. F. Zak
TI  - The Unirationality of Quartics over Nonclosed Fields Revisited
JO  - Matematičeskie zametki
PY  - 2008
SP  - 40
EP  - 47
VL  - 84
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2008_84_1_a2/
LA  - ru
ID  - MZM_2008_84_1_a2
ER  - 
%0 Journal Article
%A N. F. Zak
%T The Unirationality of Quartics over Nonclosed Fields Revisited
%J Matematičeskie zametki
%D 2008
%P 40-47
%V 84
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2008_84_1_a2/
%G ru
%F MZM_2008_84_1_a2
N. F. Zak. The Unirationality of Quartics over Nonclosed Fields Revisited. Matematičeskie zametki, Tome 84 (2008) no. 1, pp. 40-47. http://geodesic.mathdoc.fr/item/MZM_2008_84_1_a2/

[1] J. Harris, Y. Tschinkel, “Rational points on quartics”, Duke Math. J., 104:3 (2000), 477–500 | DOI | MR | Zbl

[2] Yu. I. Manin, M. A. Tsfasman, “Ratsionalnye mnogoobraziya: algebra, geometriya, arifmetika”, UMN, 41:2 (1986), 43–94 | MR | Zbl

[3] J. Harris, B. Mazur, R. Pandharipande, “Hypersurfaces of Low Degree”, Duke Math. J., 95:1 (1998), 125–160 | DOI | MR | Zbl

[4] U. Morin, “Sull'unirationalità dell'ipersurficie algebrica di qualunque ordine e dimensione sufficientemente alta”, Atti Secondo Congresso Un. Mat. Ital. (Bologna, 1940), Rome, Edizioni Cremorense, 1942, 298–302 | MR | Zbl

[5] M. Marchisio, “The unirationality of some quartic $4$-folds”, Atti Accad. Sci. Torino Cl. Sci. Fis. Mat. Natur., 136 (2002), 17–22 | MR

[6] B. Segre, “Variazione continua ed omotopia in geometria algebrica”, Ann. Mat. Pura Appl. (4), 50:1 (1960), 149–186 | DOI | MR | Zbl

[7] V. A. Iskovskikh, Yu. G. Prokhorov, Algebraic Geometry, V. Fano Varieties, Encyclopaedia Math. Sci., 47, Springer-Verlag, New York, 1999 | MR | Zbl

[8] B. Segre, “Sulle $V_n$ contenenti $\infty^{n-k}S_k$. I”, Atti Accad. Naz. Lincei. Rend. Cl. Sci. Fis. Mat. Nat. (8), 5 (1948), 193–197 | MR | Zbl

[9] F. L. Zak, Tangents and Secants of Algebraic Varieties, Transl. Math. Monogr., 127, Amer. Math. Soc., Providence, RI, 1993 | MR | Zbl