Convexity Condition in Cucker--Smale Theorems in the Theory of Teaching
Matematičeskie zametki, Tome 84 (2008) no. 1, pp. 144-148.

Voir la notice de l'article provenant de la source Math-Net.Ru

Keywords: convexity, probability measure, random variable, estimator, approximation, nearest element, least-squares method, Hilbert space, central limit theorem.
@article{MZM_2008_84_1_a13,
     author = {Yu. V. Malykhin},
     title = {Convexity {Condition} in {Cucker--Smale} {Theorems} in the {Theory} of {Teaching}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {144--148},
     publisher = {mathdoc},
     volume = {84},
     number = {1},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2008_84_1_a13/}
}
TY  - JOUR
AU  - Yu. V. Malykhin
TI  - Convexity Condition in Cucker--Smale Theorems in the Theory of Teaching
JO  - Matematičeskie zametki
PY  - 2008
SP  - 144
EP  - 148
VL  - 84
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2008_84_1_a13/
LA  - ru
ID  - MZM_2008_84_1_a13
ER  - 
%0 Journal Article
%A Yu. V. Malykhin
%T Convexity Condition in Cucker--Smale Theorems in the Theory of Teaching
%J Matematičeskie zametki
%D 2008
%P 144-148
%V 84
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2008_84_1_a13/
%G ru
%F MZM_2008_84_1_a13
Yu. V. Malykhin. Convexity Condition in Cucker--Smale Theorems in the Theory of Teaching. Matematičeskie zametki, Tome 84 (2008) no. 1, pp. 144-148. http://geodesic.mathdoc.fr/item/MZM_2008_84_1_a13/

[1] F. Cucker, S. Smale, Bull. Amer. Math. Soc. (N.S.), 39:1 (2002), 1–49 | DOI | MR | Zbl

[2] I. G. Tsarkov, Matem. zametki, 75:2 (2004), 287–301 | MR | Zbl

[3] L. P. Vlasov, UMN, 28:6 (1973), 3–66 | MR | Zbl

[4] I. G. Tsarkov, Matem. zametki, 48:4 (1990), 122–131 | MR | Zbl