On an Inequality for the Universal Spectrum of Integral Means
Matematičeskie zametki, Tome 84 (2008) no. 1, pp. 139-143

Voir la notice de l'article provenant de la source Math-Net.Ru

Keywords: spectrum of integral means, analytic univalent function, Zygmund–Szegö inequality, conformal mapping, de Branges theorem, Hausdorff measure, Borel set.
@article{MZM_2008_84_1_a12,
     author = {I. R. Kayumov},
     title = {On an {Inequality} for the {Universal} {Spectrum} of {Integral} {Means}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {139--143},
     publisher = {mathdoc},
     volume = {84},
     number = {1},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2008_84_1_a12/}
}
TY  - JOUR
AU  - I. R. Kayumov
TI  - On an Inequality for the Universal Spectrum of Integral Means
JO  - Matematičeskie zametki
PY  - 2008
SP  - 139
EP  - 143
VL  - 84
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2008_84_1_a12/
LA  - ru
ID  - MZM_2008_84_1_a12
ER  - 
%0 Journal Article
%A I. R. Kayumov
%T On an Inequality for the Universal Spectrum of Integral Means
%J Matematičeskie zametki
%D 2008
%P 139-143
%V 84
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2008_84_1_a12/
%G ru
%F MZM_2008_84_1_a12
I. R. Kayumov. On an Inequality for the Universal Spectrum of Integral Means. Matematičeskie zametki, Tome 84 (2008) no. 1, pp. 139-143. http://geodesic.mathdoc.fr/item/MZM_2008_84_1_a12/