Jackson Theorem in the Space $L_2$ on the Interval $[-1,1]$ with Power-Law Weight
Matematičeskie zametki, Tome 84 (2008) no. 1, pp. 136-138.

Voir la notice de l'article provenant de la source Math-Net.Ru

Mots-clés : Sturm–Liouville problem
Keywords: best approximation, Hilbert space, Bessel function, modulus of continuity, Fourier series.
@article{MZM_2008_84_1_a11,
     author = {V. I. Ivanov and D. V. Chertova and Liu Yongping},
     title = {Jackson {Theorem} in the {Space} $L_2$ on the {Interval} $[-1,1]$ with {Power-Law} {Weight}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {136--138},
     publisher = {mathdoc},
     volume = {84},
     number = {1},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2008_84_1_a11/}
}
TY  - JOUR
AU  - V. I. Ivanov
AU  - D. V. Chertova
AU  - Liu Yongping
TI  - Jackson Theorem in the Space $L_2$ on the Interval $[-1,1]$ with Power-Law Weight
JO  - Matematičeskie zametki
PY  - 2008
SP  - 136
EP  - 138
VL  - 84
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2008_84_1_a11/
LA  - ru
ID  - MZM_2008_84_1_a11
ER  - 
%0 Journal Article
%A V. I. Ivanov
%A D. V. Chertova
%A Liu Yongping
%T Jackson Theorem in the Space $L_2$ on the Interval $[-1,1]$ with Power-Law Weight
%J Matematičeskie zametki
%D 2008
%P 136-138
%V 84
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2008_84_1_a11/
%G ru
%F MZM_2008_84_1_a11
V. I. Ivanov; D. V. Chertova; Liu Yongping. Jackson Theorem in the Space $L_2$ on the Interval $[-1,1]$ with Power-Law Weight. Matematičeskie zametki, Tome 84 (2008) no. 1, pp. 136-138. http://geodesic.mathdoc.fr/item/MZM_2008_84_1_a11/

[1] V. A. Abilov, F. V. Abilova, Izv. vuzov. Ser. matem., 2001, no. 8, 3–9 | MR | Zbl

[2] Li Iong Ping, Trudy Mezhdunarodnoi letnei matematicheskoi shkoly S. B. Stechkina po teorii funktsii, Izd-vo TulGU, Tula, 2007, 180–190

[3] D. V. Chertova, Trudy Mezhdunarodnoi letnei matematicheskoi shkoly S. B. Stechkina po teorii funktsii, Izd-vo TulGU, Tula, 2007, 160–161

[4] B. M. Levitan, Teoriya operatorov obobschennogo sdviga, Nauka, M., 1973 | MR | Zbl

[5] N. I. Chernykh, Priblizhenie funktsii v srednem, Tr. MIAN, 88, 1967, 71–74 | MR | Zbl