A Generalized Stieltjes Criterion for the Complete Indeterminacy of Interpolation Problems
Matematičeskie zametki, Tome 84 (2008) no. 1, pp. 23-39.

Voir la notice de l'article provenant de la source Math-Net.Ru

The main result of this paper is a generalized Stieltjes criterion for the complete indeterminacy of interpolation problems in the Stieltjes class. This criterion is a generalization to limit interpolation problems of the classical Stieltjes criterion for the indeterminacy of moment problems. It is stated in terms of the Stieltjes parameters $M_j$ and $N_j$. We obtain explicit formulas for the Stieltjes parameters. General constructions are illustrated by examples of the Stieltjes moment problem and the Nevanlinna–Pick problem in the Stieltjes class.
Mots-clés : interpolation problem, Stieltjes moment problem
Keywords: Stieltjes criterion for indeterminacy, Nevanlinna–Pick problem, Stieltjes operator function, Hankel matrix.
@article{MZM_2008_84_1_a1,
     author = {Yu. M. Dyukarev},
     title = {A {Generalized} {Stieltjes} {Criterion} for the {Complete} {Indeterminacy} of {Interpolation} {Problems}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {23--39},
     publisher = {mathdoc},
     volume = {84},
     number = {1},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2008_84_1_a1/}
}
TY  - JOUR
AU  - Yu. M. Dyukarev
TI  - A Generalized Stieltjes Criterion for the Complete Indeterminacy of Interpolation Problems
JO  - Matematičeskie zametki
PY  - 2008
SP  - 23
EP  - 39
VL  - 84
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2008_84_1_a1/
LA  - ru
ID  - MZM_2008_84_1_a1
ER  - 
%0 Journal Article
%A Yu. M. Dyukarev
%T A Generalized Stieltjes Criterion for the Complete Indeterminacy of Interpolation Problems
%J Matematičeskie zametki
%D 2008
%P 23-39
%V 84
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2008_84_1_a1/
%G ru
%F MZM_2008_84_1_a1
Yu. M. Dyukarev. A Generalized Stieltjes Criterion for the Complete Indeterminacy of Interpolation Problems. Matematičeskie zametki, Tome 84 (2008) no. 1, pp. 23-39. http://geodesic.mathdoc.fr/item/MZM_2008_84_1_a1/

[1] T. Stieltjes, “Recherches sur les fractions continues”, Ann. Fac. Sci. Toulouse Sci. Math. Sci. Phys., 8:4 (1894), 1–122 ; 9:1 (1895), 1–47 | MR | Zbl | MR

[2] Yu. M. Dyukarev, “O kriteriyakh neopredelennosti matrichnoi problemy momentov Stiltesa”, Matem. zametki, 75:1 (2004), 71–88 | MR | Zbl

[3] N. I. Akhiezer, Klassicheskaya problema momentov i nekotorye voprosy analiza, svyazannye s neyu, Fizmatgiz, M., 1961 | MR

[4] Yu. M. Dyukarev, “Obschaya skhema resheniya interpolyatsionnykh zadach v klasse Stiltesa, osnovannaya na soglasovannykh integralnykh predstavleniyakh par neotritsatelnykh operatorov. I”, Matem. fiz., anal., geom., 6:1–2 (1999), 30–54 | MR | Zbl

[5] V. Bolotnikov, L. Sakhnovich, “On an operator approach to interpolation problems for Stieltjes fanctions”, Integral Equations Operator Theory, 35:4 (1999), 423–470 | DOI | MR | Zbl

[6] M. G. Krein, A. A. Nudelman, “An interpolation problem in the class of Stieltjes functions and its connections with other problems”, Integral Equations Operator Theory, 30:3 (1998), 251–278 | DOI | MR | Zbl

[7] Yu. M. Dyukarev, “O neopredelennosti interpolyatsionnykh zadach v klasse Stiltesa”, Matem. sb., 196:3 (2005), 61–88 | MR | Zbl

[8] Yu. M. Dyukarev, “Multiplikativnaya struktura rezolventnykh matrits interpolyatsionnykh zadach v klasse Stiltesa”, Bicn. Xapkibckogo un-tu. Cep. Matem., prikl. matem., mekh., 458 (1999), 143–153 | Zbl

[9] V. P. Potapov, “Drobno-lineinye preobrazovaniya matrits”, Issledovaniya po teorii operatorov i ikh prilozheniyam, Naukova dumka, Kiev, 1979, 75–97 | MR | Zbl

[10] Yu. M. Dyukarev, “Multiplikativnye i additivnye klassy Stiltesa analiticheskikh matrits-funktsii i svyazannye s nimi interpolyatsionnye zadachi. II”, Teoriya funktsii, funkts. analiz i ikh prilozh., 1982, no. 38, 40–48 | MR | Zbl

[11] V. P. Potapov, “Teorema o module. II”, Teoriya funktsii, funkts. analiz i ikh prilozh., 1983, no. 39, 95–106 | MR | Zbl