Diophantine Approximations of the Number~$\pi$ by Numbers from the Field $\mathbb Q(\sqrt{3})$
Matematičeskie zametki, Tome 83 (2008) no. 6, pp. 912-922

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove an estimate of the irrationality measure of any nonzero number of the form $r_1\pi+r_2\pi/\sqrt{3}$, $r_1,r_2\in\mathbb Q(\sqrt{3})$.
Mots-clés : Diophantine approximation
Keywords: the number $\pi$, the field $\mathbb Q(\sqrt{3})$, irrationality measure of a number, Kummer's formula, hypergeometric function, saddle-point method.
@article{MZM_2008_83_6_a9,
     author = {E. B. Tomashevskaya},
     title = {Diophantine {Approximations} of the {Number~}$\pi$ by {Numbers} from the {Field} $\mathbb Q(\sqrt{3})$},
     journal = {Matemati\v{c}eskie zametki},
     pages = {912--922},
     publisher = {mathdoc},
     volume = {83},
     number = {6},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2008_83_6_a9/}
}
TY  - JOUR
AU  - E. B. Tomashevskaya
TI  - Diophantine Approximations of the Number~$\pi$ by Numbers from the Field $\mathbb Q(\sqrt{3})$
JO  - Matematičeskie zametki
PY  - 2008
SP  - 912
EP  - 922
VL  - 83
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2008_83_6_a9/
LA  - ru
ID  - MZM_2008_83_6_a9
ER  - 
%0 Journal Article
%A E. B. Tomashevskaya
%T Diophantine Approximations of the Number~$\pi$ by Numbers from the Field $\mathbb Q(\sqrt{3})$
%J Matematičeskie zametki
%D 2008
%P 912-922
%V 83
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2008_83_6_a9/
%G ru
%F MZM_2008_83_6_a9
E. B. Tomashevskaya. Diophantine Approximations of the Number~$\pi$ by Numbers from the Field $\mathbb Q(\sqrt{3})$. Matematičeskie zametki, Tome 83 (2008) no. 6, pp. 912-922. http://geodesic.mathdoc.fr/item/MZM_2008_83_6_a9/