Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2008_83_6_a8, author = {B. I. Selivanov}, title = {Limit {Distributions} of the $\chi^2$ {Statistic} of {K.~Pearson} in a {Sequence} of {Independent} {Trials}}, journal = {Matemati\v{c}eskie zametki}, pages = {899--911}, publisher = {mathdoc}, volume = {83}, number = {6}, year = {2008}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2008_83_6_a8/} }
TY - JOUR AU - B. I. Selivanov TI - Limit Distributions of the $\chi^2$ Statistic of K.~Pearson in a Sequence of Independent Trials JO - Matematičeskie zametki PY - 2008 SP - 899 EP - 911 VL - 83 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2008_83_6_a8/ LA - ru ID - MZM_2008_83_6_a8 ER -
B. I. Selivanov. Limit Distributions of the $\chi^2$ Statistic of K.~Pearson in a Sequence of Independent Trials. Matematičeskie zametki, Tome 83 (2008) no. 6, pp. 899-911. http://geodesic.mathdoc.fr/item/MZM_2008_83_6_a8/
[1] G. Kramer, Matematicheskie metody statistiki, GIIL, M., 1948 | MR | Zbl
[2] E. Leman, Proverka statisticheskikh gipotez, Nauka, M., 1964 | MR | Zbl
[3] J. D. Broffitt, R. H. Randles, “A power approximation for the chi-square goodness-of-fit test: simple hypothesis case”, J. Amer. Statist. Assoc., 72:359 (1977), 604–607 | DOI | MR | Zbl
[4] B. I. Selivanov, “O predelnykh raspredeleniyakh statistiki $\chi^2$”, Teoriya veroyatn. i ee primen., 29:1 (1984), 132–134 | MR | Zbl
[5] S. R. Rao, Lineinye statisticheskie metody i ikh primeneniya, Nauka, M., 1968 | MR | Zbl
[6] M. Kendall, F. Styuart, Statisticheskie vyvody i svyazi, Nauka, M., 1973 | MR | Zbl
[7] B. Gyires, “On the asymptotic behaviour of the generalized multinomial distribution”, Recent Developments in Statistics (Proc. European Meeting Statisticians, Grenoble, 1976), North-Holland, Amsterdam, 1977, 461–470 | MR
[8] H. Chernoff, E. L. Lehmann, “The use of maximum likelihood estimates in $\chi^2$ tests for goodness of fit”, Ann. Math. Statist., 25:3 (1954), 579–586 ; Г. Чернов, Е. Л. Леман, “Использование оценок максимума правдоподобия в критериях согласия хи-квадрат”, Математика. Сб. пер., 7:6 (1963), 131–138 | DOI | MR | Zbl
[9] J. J. Dik, M. C. M. de Gunst, “The distribution of general quadratic form in normal variables”, Statist. Neerlandica, 39:1 (1985), 14–26 | DOI | MR | Zbl
[10] B. I. Selivanov, “Ob odnom klasse statistik tipa khi-kvadrat”, Obozrenie priklad. i promyshl. matem., 2:6 (1995), 926–966
[11] G. M. Fikhtengolts, Kurs differentsialnogo i integralnogo ischisleniya, t. 1, GITTL, M.–L., 1951 | MR | Zbl