On the Distribution of Integer Random Variables Related by a Certain Linear Inequality.~III
Matematičeskie zametki, Tome 83 (2008) no. 6, pp. 880-898
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider tuples $\{N_{jk}\}$, $j=1,2,\dots$, $k=1,\dots,q_j$, of nonnegative integers such that
$$
\sum_{j=1}^\infty\sum_{k=1}^{q_j} jN_{jk}\le M.
$$
Assuming that $q_j\sim j^{d-1}$, $1$, we study how the probabilities of deviations of the sums $\sum_{j=j_1}^{j_2}\sum_{k=1}^{q_j} N_{jk}$ from the corresponding integrals of the Bose–Einstein distribution depend on the choice of the interval $[j_1,j_2]$.
Keywords:
Bose–Einstein distribution, random variable, Euler–Maclaurin formula, strict convexity.
Mots-clés : Legendre transform, Gram matrix
Mots-clés : Legendre transform, Gram matrix
@article{MZM_2008_83_6_a7,
author = {V. P. Maslov and V. E. Nazaikinskii},
title = {On the {Distribution} of {Integer} {Random} {Variables} {Related} by a {Certain} {Linear} {Inequality.~III}},
journal = {Matemati\v{c}eskie zametki},
pages = {880--898},
publisher = {mathdoc},
volume = {83},
number = {6},
year = {2008},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2008_83_6_a7/}
}
TY - JOUR AU - V. P. Maslov AU - V. E. Nazaikinskii TI - On the Distribution of Integer Random Variables Related by a Certain Linear Inequality.~III JO - Matematičeskie zametki PY - 2008 SP - 880 EP - 898 VL - 83 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2008_83_6_a7/ LA - ru ID - MZM_2008_83_6_a7 ER -
V. P. Maslov; V. E. Nazaikinskii. On the Distribution of Integer Random Variables Related by a Certain Linear Inequality.~III. Matematičeskie zametki, Tome 83 (2008) no. 6, pp. 880-898. http://geodesic.mathdoc.fr/item/MZM_2008_83_6_a7/