Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2008_83_6_a6, author = {V. P. Maslov}, title = {Taking into {Account} the {Interaction} between {Particles} in the {New} {Nucleation} {Theory,} {Quasiparticles,} {Quantization} of {Vortices,} and the {Two-Particle} {Distribution} {Function}}, journal = {Matemati\v{c}eskie zametki}, pages = {864--879}, publisher = {mathdoc}, volume = {83}, number = {6}, year = {2008}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2008_83_6_a6/} }
TY - JOUR AU - V. P. Maslov TI - Taking into Account the Interaction between Particles in the New Nucleation Theory, Quasiparticles, Quantization of Vortices, and the Two-Particle Distribution Function JO - Matematičeskie zametki PY - 2008 SP - 864 EP - 879 VL - 83 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2008_83_6_a6/ LA - ru ID - MZM_2008_83_6_a6 ER -
%0 Journal Article %A V. P. Maslov %T Taking into Account the Interaction between Particles in the New Nucleation Theory, Quasiparticles, Quantization of Vortices, and the Two-Particle Distribution Function %J Matematičeskie zametki %D 2008 %P 864-879 %V 83 %N 6 %I mathdoc %U http://geodesic.mathdoc.fr/item/MZM_2008_83_6_a6/ %G ru %F MZM_2008_83_6_a6
V. P. Maslov. Taking into Account the Interaction between Particles in the New Nucleation Theory, Quasiparticles, Quantization of Vortices, and the Two-Particle Distribution Function. Matematičeskie zametki, Tome 83 (2008) no. 6, pp. 864-879. http://geodesic.mathdoc.fr/item/MZM_2008_83_6_a6/
[1] V. P. Maslov, “Reshenie paradoksa Gibbsa v ramkakh klassicheskoi mekhaniki (statfiziki) i kristallizatsiya gaza $C_{60}$”, Matem. zametki, 83:5 (2008), 787–791
[2] V. P. Maslov, “Revision of probability theory from the point of view of quantum statistics”, Russ. J. Math. Phys., 14:1 (2007), 66–95 | DOI | MR | Zbl
[3] V. P. Maslov, “Kvazitermodinamicheskaya popravka k zakonu Stefana–Boltsmana”, TMF, 154:1 (2008), 207–208 | MR
[4] V. P. Maslov V. E. Nazaikinskii, “O raspredelenii tselochislennykh sluchainykh velichin, svyazannykh odnim lineinym neravenstvom. I”, Matem. zametki, 83:2 (2008), 232–263
[5] A. A. Karatsuba, Osnovy analiticheskoi teorii chisel, Nauka, M., 1975 | MR | Zbl
[6] K. Chandrasekaran, Arifmeticheskie funktsii, Nauka, M., 1975 | MR | Zbl
[7] A. M. Vershik, “Statisticheskaya mekhanika kombinatornykh razbienii i ikh predelnye konfiguratsii”, Funkts. analiz i ego pril., 30:2 (1996), 19–39 | MR | Zbl
[8] A. I. Burshtein, Molekulyarnaya fizika, Nauka, Novosibirsk, 1986
[9] I. Z. Fisher, Statisticheskaya teoriya zhidkostei, Nauka, M., 1961
[10] V. P. Maslov, Kvantovaya ekonomika, Nauka, M., 2006
[11] V. P. Maslov, “Quasi-particles associated with Lagrangian manifolds and (in the ergodic case) with constant energy manifolds corresponding to semiclassical self-consistent fields. V”, Russ. J. Math. Phys., 3:4 (1996), 529–534 | MR | Zbl
[12] V. P. Maslov, “Quasi-particles associated with Lagrangian manifolds corresponding to classical self-consistent fields. VI”, Russ. J. Math. Phys., 4:1 (1996), 117–122 | MR | Zbl
[13] V. P. Maslov, “Quasi-particles associated with isoenergetic manifolds corresponding to classical self-consistent fields. VII”, Russ. J. Math. Phys., 4:2 (1996), 266–270 | MR | Zbl
[14] V. P. Maslov, A. S. Mischenko, “Kvaziklassicheskaya asimptotika kvazichastits”, Matem. sb., 189:6, 85–116 | MR | Zbl
[15] V. P. Maslov, “Quasi-particles associated with Lagrangian manifolds corresponding to classical self-consistent fields. I”, Russ. J. Math. Phys., 2:4 (1994), 528–534 | MR | Zbl
[16] V. P. Maslov, “Quasi-particles associated with Lagrangian manifolds corresponding to classical self-consistent fields. II”, Russ. J. Math. Phys., 3:1 (1995), 123–132 | MR | Zbl
[17] V. P. Maslov, “Quasi-particles associated with Lagrangian manifolds corresponding to semiclassical self-consistent fields. III”, Russ. J. Math. Phys., 3:2 (1995), 271–276 | MR | Zbl
[18] V. P. Maslov, “Quasi-particles associated with Lagrangian manifolds corresponding to semiclassical self-consistent fields. IV”, Russ. J. Math. Phys., 3:3 (1995), 401–406 | MR | Zbl
[19] V. P. Maslov, “O sverkhtekuchesti klassicheskoi zhidkosti v nanotrubke dlya chetnogo i nechetnogo chisla neitronov v molekule”, TMF, 153:3 (2007), 388–408 | MR
[20] V. P. Maslov, Kompleksnye markovskie tsepi i kontinualnyi integral Feinmana dlya nelineinykh uravnenii, Nauka, M., 1976 | MR | Zbl
[21] V. P. Maslov, Uravneniya samosoglasovannogo polya, Itogi nauki i tekhniki. Sovrem. problemy matem., 11, VINITI, M., 1978
[22] M. V. Kapacev, V. P. Maslov, Nelineinye skobki Puassona. Geometriya i kvantovanie, Nauka, M., 1991 | MR | Zbl
[23] V. P. Maslov, Kvantovanie termodinamiki i ultravtorichnoe kvantovanie, In-t kompyut. issled., M., 2001
[24] V. P. Maslov, O. Yu. Shvedov, Metod kompleksnogo rostka v mnogochastichnykh zadachakh i zadachakh kvantovoi teorii polya, URSS, M., 2000
[25] V. P. Maslov, Kompleksnyi metod VKB v nelineinykh uravneniyakh, Nauka, M., 1977 | MR | Zbl
[26] A. A. Vlasov, “O vibratsionnykh svoistvakh elektronnogo gaza”, ZhETF, 8 (1938), 291–318 | Zbl
[27] E. E. Tareyeva, “On a microscopic approach to the theory of polymorphic phase transitions”, Phys. Lett. A, 49:4 (1974), 309–310 | DOI
[28] V. N. Ryzhov, E. E. Tareyeva, “Towards a statistical theory of freezing”, Phys. Lett. A, 75:1–2 (1979), 88–90 | DOI
[29] V. P. Maslov, “O zakone dispersii vida $\varepsilon(p)=\hbar^2p^2/2m+\widetilde V(p)-\widetilde V(0)$ elementarnykh vozbuzhdenii neidealnogo fermi-gaza v priblizhenii parnogo vzaimodeistviya $(i\leftrightarrow j)$, $V(|x_i-x_j|)$”, Matem. zametki, 82:5 (2007), 690–708
[30] F. A. Berezin, Metod vtorichnogo kvantovaniya, Nauka, M., 1987 | MR | Zbl