Taking into Account the Interaction between Particles in the New Nucleation Theory, Quasiparticles, Quantization of Vortices, and the Two-Particle Distribution Function
Matematičeskie zametki, Tome 83 (2008) no. 6, pp. 864-879.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the present paper, we consider in greater detail the problems that were discussed in the previous short communication [1].
Mots-clés : quasiparticles, quantization of vortices, phase transition
Keywords: two-particle distribution function, Hougen–Watson diagram, Boltzmann distribution, Lennard-Jones potential, nanocanonical distribution, superfluidity.
@article{MZM_2008_83_6_a6,
     author = {V. P. Maslov},
     title = {Taking into {Account} the {Interaction} between {Particles} in the {New} {Nucleation} {Theory,} {Quasiparticles,} {Quantization} of {Vortices,} and the {Two-Particle} {Distribution} {Function}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {864--879},
     publisher = {mathdoc},
     volume = {83},
     number = {6},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2008_83_6_a6/}
}
TY  - JOUR
AU  - V. P. Maslov
TI  - Taking into Account the Interaction between Particles in the New Nucleation Theory, Quasiparticles, Quantization of Vortices, and the Two-Particle Distribution Function
JO  - Matematičeskie zametki
PY  - 2008
SP  - 864
EP  - 879
VL  - 83
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2008_83_6_a6/
LA  - ru
ID  - MZM_2008_83_6_a6
ER  - 
%0 Journal Article
%A V. P. Maslov
%T Taking into Account the Interaction between Particles in the New Nucleation Theory, Quasiparticles, Quantization of Vortices, and the Two-Particle Distribution Function
%J Matematičeskie zametki
%D 2008
%P 864-879
%V 83
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2008_83_6_a6/
%G ru
%F MZM_2008_83_6_a6
V. P. Maslov. Taking into Account the Interaction between Particles in the New Nucleation Theory, Quasiparticles, Quantization of Vortices, and the Two-Particle Distribution Function. Matematičeskie zametki, Tome 83 (2008) no. 6, pp. 864-879. http://geodesic.mathdoc.fr/item/MZM_2008_83_6_a6/

[1] V. P. Maslov, “Reshenie paradoksa Gibbsa v ramkakh klassicheskoi mekhaniki (statfiziki) i kristallizatsiya gaza $C_{60}$”, Matem. zametki, 83:5 (2008), 787–791

[2] V. P. Maslov, “Revision of probability theory from the point of view of quantum statistics”, Russ. J. Math. Phys., 14:1 (2007), 66–95 | DOI | MR | Zbl

[3] V. P. Maslov, “Kvazitermodinamicheskaya popravka k zakonu Stefana–Boltsmana”, TMF, 154:1 (2008), 207–208 | MR

[4] V. P. Maslov V. E. Nazaikinskii, “O raspredelenii tselochislennykh sluchainykh velichin, svyazannykh odnim lineinym neravenstvom. I”, Matem. zametki, 83:2 (2008), 232–263

[5] A. A. Karatsuba, Osnovy analiticheskoi teorii chisel, Nauka, M., 1975 | MR | Zbl

[6] K. Chandrasekaran, Arifmeticheskie funktsii, Nauka, M., 1975 | MR | Zbl

[7] A. M. Vershik, “Statisticheskaya mekhanika kombinatornykh razbienii i ikh predelnye konfiguratsii”, Funkts. analiz i ego pril., 30:2 (1996), 19–39 | MR | Zbl

[8] A. I. Burshtein, Molekulyarnaya fizika, Nauka, Novosibirsk, 1986

[9] I. Z. Fisher, Statisticheskaya teoriya zhidkostei, Nauka, M., 1961

[10] V. P. Maslov, Kvantovaya ekonomika, Nauka, M., 2006

[11] V. P. Maslov, “Quasi-particles associated with Lagrangian manifolds and (in the ergodic case) with constant energy manifolds corresponding to semiclassical self-consistent fields. V”, Russ. J. Math. Phys., 3:4 (1996), 529–534 | MR | Zbl

[12] V. P. Maslov, “Quasi-particles associated with Lagrangian manifolds corresponding to classical self-consistent fields. VI”, Russ. J. Math. Phys., 4:1 (1996), 117–122 | MR | Zbl

[13] V. P. Maslov, “Quasi-particles associated with isoenergetic manifolds corresponding to classical self-consistent fields. VII”, Russ. J. Math. Phys., 4:2 (1996), 266–270 | MR | Zbl

[14] V. P. Maslov, A. S. Mischenko, “Kvaziklassicheskaya asimptotika kvazichastits”, Matem. sb., 189:6, 85–116 | MR | Zbl

[15] V. P. Maslov, “Quasi-particles associated with Lagrangian manifolds corresponding to classical self-consistent fields. I”, Russ. J. Math. Phys., 2:4 (1994), 528–534 | MR | Zbl

[16] V. P. Maslov, “Quasi-particles associated with Lagrangian manifolds corresponding to classical self-consistent fields. II”, Russ. J. Math. Phys., 3:1 (1995), 123–132 | MR | Zbl

[17] V. P. Maslov, “Quasi-particles associated with Lagrangian manifolds corresponding to semiclassical self-consistent fields. III”, Russ. J. Math. Phys., 3:2 (1995), 271–276 | MR | Zbl

[18] V. P. Maslov, “Quasi-particles associated with Lagrangian manifolds corresponding to semiclassical self-consistent fields. IV”, Russ. J. Math. Phys., 3:3 (1995), 401–406 | MR | Zbl

[19] V. P. Maslov, “O sverkhtekuchesti klassicheskoi zhidkosti v nanotrubke dlya chetnogo i nechetnogo chisla neitronov v molekule”, TMF, 153:3 (2007), 388–408 | MR

[20] V. P. Maslov, Kompleksnye markovskie tsepi i kontinualnyi integral Feinmana dlya nelineinykh uravnenii, Nauka, M., 1976 | MR | Zbl

[21] V. P. Maslov, Uravneniya samosoglasovannogo polya, Itogi nauki i tekhniki. Sovrem. problemy matem., 11, VINITI, M., 1978

[22] M. V. Kapacev, V. P. Maslov, Nelineinye skobki Puassona. Geometriya i kvantovanie, Nauka, M., 1991 | MR | Zbl

[23] V. P. Maslov, Kvantovanie termodinamiki i ultravtorichnoe kvantovanie, In-t kompyut. issled., M., 2001

[24] V. P. Maslov, O. Yu. Shvedov, Metod kompleksnogo rostka v mnogochastichnykh zadachakh i zadachakh kvantovoi teorii polya, URSS, M., 2000

[25] V. P. Maslov, Kompleksnyi metod VKB v nelineinykh uravneniyakh, Nauka, M., 1977 | MR | Zbl

[26] A. A. Vlasov, “O vibratsionnykh svoistvakh elektronnogo gaza”, ZhETF, 8 (1938), 291–318 | Zbl

[27] E. E. Tareyeva, “On a microscopic approach to the theory of polymorphic phase transitions”, Phys. Lett. A, 49:4 (1974), 309–310 | DOI

[28] V. N. Ryzhov, E. E. Tareyeva, “Towards a statistical theory of freezing”, Phys. Lett. A, 75:1–2 (1979), 88–90 | DOI

[29] V. P. Maslov, “O zakone dispersii vida $\varepsilon(p)=\hbar^2p^2/2m+\widetilde V(p)-\widetilde V(0)$ elementarnykh vozbuzhdenii neidealnogo fermi-gaza v priblizhenii parnogo vzaimodeistviya $(i\leftrightarrow j)$, $V(|x_i-x_j|)$”, Matem. zametki, 82:5 (2007), 690–708

[30] F. A. Berezin, Metod vtorichnogo kvantovaniya, Nauka, M., 1987 | MR | Zbl