Moment Inequality for Sums of Multi-Indexed Dependent Random Variables
Matematičeskie zametki, Tome 83 (2008) no. 6, pp. 843-856

Voir la notice de l'article provenant de la source Math-Net.Ru

We study a real random field defined on an integer lattice. Its dependence is described by certain covariance inequalities. We obtain an upper bound of absolute moments of appropriate order for particular sums (generated by a given field) taken over finite sets of arbitrary configuration.
Keywords: real random field, weak association of random variables, moment inequality, covariance inequalities, Lipschitz function.
Mots-clés : Lebesgue measure
@article{MZM_2008_83_6_a4,
     author = {N. Yu. Kryzhanovskaya},
     title = {Moment {Inequality} for {Sums} of {Multi-Indexed} {Dependent} {Random} {Variables}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {843--856},
     publisher = {mathdoc},
     volume = {83},
     number = {6},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2008_83_6_a4/}
}
TY  - JOUR
AU  - N. Yu. Kryzhanovskaya
TI  - Moment Inequality for Sums of Multi-Indexed Dependent Random Variables
JO  - Matematičeskie zametki
PY  - 2008
SP  - 843
EP  - 856
VL  - 83
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2008_83_6_a4/
LA  - ru
ID  - MZM_2008_83_6_a4
ER  - 
%0 Journal Article
%A N. Yu. Kryzhanovskaya
%T Moment Inequality for Sums of Multi-Indexed Dependent Random Variables
%J Matematičeskie zametki
%D 2008
%P 843-856
%V 83
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2008_83_6_a4/
%G ru
%F MZM_2008_83_6_a4
N. Yu. Kryzhanovskaya. Moment Inequality for Sums of Multi-Indexed Dependent Random Variables. Matematičeskie zametki, Tome 83 (2008) no. 6, pp. 843-856. http://geodesic.mathdoc.fr/item/MZM_2008_83_6_a4/