Moment Inequality for Sums of Multi-Indexed Dependent Random Variables
Matematičeskie zametki, Tome 83 (2008) no. 6, pp. 843-856.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study a real random field defined on an integer lattice. Its dependence is described by certain covariance inequalities. We obtain an upper bound of absolute moments of appropriate order for particular sums (generated by a given field) taken over finite sets of arbitrary configuration.
Keywords: real random field, weak association of random variables, moment inequality, covariance inequalities, Lipschitz function.
Mots-clés : Lebesgue measure
@article{MZM_2008_83_6_a4,
     author = {N. Yu. Kryzhanovskaya},
     title = {Moment {Inequality} for {Sums} of {Multi-Indexed} {Dependent} {Random} {Variables}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {843--856},
     publisher = {mathdoc},
     volume = {83},
     number = {6},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2008_83_6_a4/}
}
TY  - JOUR
AU  - N. Yu. Kryzhanovskaya
TI  - Moment Inequality for Sums of Multi-Indexed Dependent Random Variables
JO  - Matematičeskie zametki
PY  - 2008
SP  - 843
EP  - 856
VL  - 83
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2008_83_6_a4/
LA  - ru
ID  - MZM_2008_83_6_a4
ER  - 
%0 Journal Article
%A N. Yu. Kryzhanovskaya
%T Moment Inequality for Sums of Multi-Indexed Dependent Random Variables
%J Matematičeskie zametki
%D 2008
%P 843-856
%V 83
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2008_83_6_a4/
%G ru
%F MZM_2008_83_6_a4
N. Yu. Kryzhanovskaya. Moment Inequality for Sums of Multi-Indexed Dependent Random Variables. Matematičeskie zametki, Tome 83 (2008) no. 6, pp. 843-856. http://geodesic.mathdoc.fr/item/MZM_2008_83_6_a4/

[1] V. V. Petrov, Predelnye teoremy dlya summ nezavisimykh sluchainykh velichin, Nauka, M., 1987 | MR | Zbl

[2] I. A. Ibragimov, Yu. V. Linnik, Nezavisimye i statsionarno svyazannye velichiny, Nauka, M., 1965 | MR | Zbl

[3] A. V. Bulinskii, Predelnye teoremy v usloviyakh slaboi zavisimosti, Izd-vo MGU, M., 1989

[4] P. Doukhan, Mixing. Properties and Examples, Lecture Notes in Statist., 85, Springer, New York, 1994 | MR | Zbl

[5] A. N. Shiryaev, Veroyatnost, kn. 1, 2, MTsNMO, M., 2004 | MR | Zbl

[6] A. Bulinski, A. Shashkin, Limit Theorems for Associated Random Fields and Related Systems, Adv. Ser. Stat. Sci. Appl. Probab., 10, World Sci. Publ., Hackensack, NJ, 2007 | MR

[7] M. J. Wichura, “Inequalities with applications to the weak convergence of random processes with multi-dimensional time parameters”, Ann. Math. Statist., 40:2 (1969), 681–687 | DOI | MR | Zbl

[8] V. F. Gaposhkin, “Otsenki momentov dlya integralov ot $\rho$-peremeshivayuschikhsya sluchainykh polei”, Teoriya veroyatn. i ee primen., 36:2 (1991), 262–273 | MR | Zbl

[9] Yu. Yu. Bakhtin, A. V. Bulinskii, “Momentnye neravenstva dlya summ zavisimykh multiindeksirovannykh sluchainykh velichin”, Fundament. i prikl. matem., 3:4 (1997), 1101–1108 | MR | Zbl

[10] M. A. Vronskii, “Skorost skhodimosti v UZBCh dlya assotsiirovannykh posledovatelnostei i polei”, Teoriya veroyatn. i ee primen., 43:3 (1998), 439–455 | MR | Zbl

[11] A. P. Shashkin, “Maksimalnoe neravenstvo dlya slabo zavisimogo sluchainogo polya”, Matem. zametki, 75:5 (2004), 773–782 | MR | Zbl

[12] A. V. Bulinski, A. P. Shashkin, “Strong invariance principle for dependent random fields”, Dynamics and Stochastics, IMS Lecture Notes Monogr. Ser., 48, Inst. Math. Statist., Beachwood, OH, 2006, 128–143 | DOI | MR | Zbl

[13] M. A. Lifshits, “Sektsionirovanie mnogomernykh mnozhestv”, Koltsa i moduli. Predelnye teoremy teorii veroyatnostei, t. 1, Izd-vo LGU, L., 1986, 175–178 | MR

[14] A. Bulinski, C. Suquet, “Normal approximation for quasi-associated random fields”, Statist. Probab. Lett., 54:2 (2001), 215–226 | DOI | MR | Zbl

[15] A. V. Bulinskii, E. Shabanovich, “Asimptoticheskoe povedenie nekotorykh funktsionalov ot polozhitelno i otritsatelno zavisimykh sluchainykh polei”, Fundament. i prikl. matem., 4:2 (1998), 479–492 | MR | Zbl

[16] C. M. Newman, “Normal fluctuations and the FKG inequalities”, Comm. Math. Phys., 74:2 (1980), 119–128 | DOI | MR | Zbl

[17] A. P. Shashkin, “A weak dependence property of a spin system”, Transactions of XXIV International Seminar on Stability Problems for Stochastic Models (Yurmala, Latvia), 2004, 30–35

[18] A. Bulinski, N. Kryzhanovskaya, “Convergence rate in CLT for vector-valued random fields with self-normalization”, Probab. Math. Statist., 26:2 (2006), 261–281 | MR | Zbl