A Necessary Condition for the Completeness of the System $\{e^{-\lambda_nt}\mid\operatorname{Re}\lambda_n>0\}$ in the Spaces $C_0(\mathbb R_+)$ and $L^p(\mathbb R_+)$, $p>2$
Matematičeskie zametki, Tome 83 (2008) no. 6, pp. 831-842
Cet article a éte moissonné depuis la source Math-Net.Ru
We obtain a necessary condition for the completeness of the system $$ e(\Lambda)=\{e^{-\lambda_nt}\mid\operatorname{Re}\lambda_n>0,\,n\in\mathbb Z\} $$ in the spaces $C_0$ and $L^p(\mathbb R_+)$, $p>2$, for the case in which the set of limit points of the sequence $\{\lambda_n\}$ is countable and separable.
Keywords:
sequence of exponentials, the spaces $C_0(\mathbb R_+)$ and $L^p(\mathbb R_+)$, $p>2$, Hardy class of functions, Bernstein's inequality, analytic function.
Mots-clés : Szász condition
Mots-clés : Szász condition
@article{MZM_2008_83_6_a3,
author = {I. O. Krasnobaev},
title = {A {Necessary} {Condition} for the {Completeness} of the {System} $\{e^{-\lambda_nt}\mid\operatorname{Re}\lambda_n>0\}$ in the {Spaces~}$C_0(\mathbb R_+)$ and $L^p(\mathbb R_+)$, $p>2$},
journal = {Matemati\v{c}eskie zametki},
pages = {831--842},
year = {2008},
volume = {83},
number = {6},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2008_83_6_a3/}
}
TY - JOUR
AU - I. O. Krasnobaev
TI - A Necessary Condition for the Completeness of the System $\{e^{-\lambda_nt}\mid\operatorname{Re}\lambda_n>0\}$ in the Spaces $C_0(\mathbb R_+)$ and $L^p(\mathbb R_+)$, $p>2$
JO - Matematičeskie zametki
PY - 2008
SP - 831
EP - 842
VL - 83
IS - 6
UR - http://geodesic.mathdoc.fr/item/MZM_2008_83_6_a3/
LA - ru
ID - MZM_2008_83_6_a3
ER -
%0 Journal Article
%A I. O. Krasnobaev
%T A Necessary Condition for the Completeness of the System $\{e^{-\lambda_nt}\mid\operatorname{Re}\lambda_n>0\}$ in the Spaces $C_0(\mathbb R_+)$ and $L^p(\mathbb R_+)$, $p>2$
%J Matematičeskie zametki
%D 2008
%P 831-842
%V 83
%N 6
%U http://geodesic.mathdoc.fr/item/MZM_2008_83_6_a3/
%G ru
%F MZM_2008_83_6_a3
I. O. Krasnobaev. A Necessary Condition for the Completeness of the System $\{e^{-\lambda_nt}\mid\operatorname{Re}\lambda_n>0\}$ in the Spaces $C_0(\mathbb R_+)$ and $L^p(\mathbb R_+)$, $p>2$. Matematičeskie zametki, Tome 83 (2008) no. 6, pp. 831-842. http://geodesic.mathdoc.fr/item/MZM_2008_83_6_a3/
[1] L. Schwartz, Étude des sommes d'exponentielles réelles, Actualités Sci. Ind., 959, Hermann et Cie., Paris, 1943 | MR | Zbl
[2] A. M. Sedletskii, Klassy analiticheskikh preobrazovanii Fure i eksponentsialnye approksimatsii, Fizmatlit, M., 2005
[3] O. Százs, “Über die Approximation stetiger Functionen durch lineare Aggregate von Potenzen”, Math. Ann., 77:4 (1916), 482–496 | DOI | MR | Zbl
[4] R. Paley, N. Wiener, Fourier Transforms in the Complex Domain, Amer. Math. Soc. Colloq. Publ., 19, Amer. Math. Soc., New York, 1934 | MR | Zbl
[5] N. Levinson, “On the Szász–Müntz theorem”, J. Math. Anal. Appl., 48:1 (1974), 264–269 | DOI | MR | Zbl
[6] R. P. Boas, Entire Functions, Academic Press, New York, 1954 | MR | Zbl