A Necessary Condition for the Completeness of the System $\{e^{-\lambda_nt}\mid\operatorname{Re}\lambda_n>0\}$ in the Spaces~$C_0(\mathbb R_+)$ and $L^p(\mathbb R_+)$, $p>2$
Matematičeskie zametki, Tome 83 (2008) no. 6, pp. 831-842
Voir la notice de l'article provenant de la source Math-Net.Ru
We obtain a necessary condition for the completeness of the system
$$
e(\Lambda)=\{e^{-\lambda_nt}\mid\operatorname{Re}\lambda_n>0,\,n\in\mathbb Z\}
$$
in
the spaces $C_0$ and $L^p(\mathbb R_+)$, $p>2$, for the case in which the set of limit points of the sequence $\{\lambda_n\}$ is countable and separable.
Keywords:
sequence of exponentials, the spaces $C_0(\mathbb R_+)$ and $L^p(\mathbb R_+)$, $p>2$, Hardy class of functions, Bernstein's inequality, analytic function.
Mots-clés : Szász condition
Mots-clés : Szász condition
@article{MZM_2008_83_6_a3,
author = {I. O. Krasnobaev},
title = {A {Necessary} {Condition} for the {Completeness} of the {System} $\{e^{-\lambda_nt}\mid\operatorname{Re}\lambda_n>0\}$ in the {Spaces~}$C_0(\mathbb R_+)$ and $L^p(\mathbb R_+)$, $p>2$},
journal = {Matemati\v{c}eskie zametki},
pages = {831--842},
publisher = {mathdoc},
volume = {83},
number = {6},
year = {2008},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2008_83_6_a3/}
}
TY - JOUR
AU - I. O. Krasnobaev
TI - A Necessary Condition for the Completeness of the System $\{e^{-\lambda_nt}\mid\operatorname{Re}\lambda_n>0\}$ in the Spaces~$C_0(\mathbb R_+)$ and $L^p(\mathbb R_+)$, $p>2$
JO - Matematičeskie zametki
PY - 2008
SP - 831
EP - 842
VL - 83
IS - 6
PB - mathdoc
UR - http://geodesic.mathdoc.fr/item/MZM_2008_83_6_a3/
LA - ru
ID - MZM_2008_83_6_a3
ER -
%0 Journal Article
%A I. O. Krasnobaev
%T A Necessary Condition for the Completeness of the System $\{e^{-\lambda_nt}\mid\operatorname{Re}\lambda_n>0\}$ in the Spaces~$C_0(\mathbb R_+)$ and $L^p(\mathbb R_+)$, $p>2$
%J Matematičeskie zametki
%D 2008
%P 831-842
%V 83
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2008_83_6_a3/
%G ru
%F MZM_2008_83_6_a3
I. O. Krasnobaev. A Necessary Condition for the Completeness of the System $\{e^{-\lambda_nt}\mid\operatorname{Re}\lambda_n>0\}$ in the Spaces~$C_0(\mathbb R_+)$ and $L^p(\mathbb R_+)$, $p>2$. Matematičeskie zametki, Tome 83 (2008) no. 6, pp. 831-842. http://geodesic.mathdoc.fr/item/MZM_2008_83_6_a3/