A Necessary Condition for the Completeness of the System $\{e^{-\lambda_nt}\mid\operatorname{Re}\lambda_n>0\}$ in the Spaces~$C_0(\mathbb R_+)$ and $L^p(\mathbb R_+)$, $p>2$
Matematičeskie zametki, Tome 83 (2008) no. 6, pp. 831-842.

Voir la notice de l'article provenant de la source Math-Net.Ru

We obtain a necessary condition for the completeness of the system $$ e(\Lambda)=\{e^{-\lambda_nt}\mid\operatorname{Re}\lambda_n>0,\,n\in\mathbb Z\} $$ in the spaces $C_0$ and $L^p(\mathbb R_+)$, $p>2$, for the case in which the set of limit points of the sequence $\{\lambda_n\}$ is countable and separable.
Keywords: sequence of exponentials, the spaces $C_0(\mathbb R_+)$ and $L^p(\mathbb R_+)$, $p>2$, Hardy class of functions, Bernstein's inequality, analytic function.
Mots-clés : Szász condition
@article{MZM_2008_83_6_a3,
     author = {I. O. Krasnobaev},
     title = {A {Necessary} {Condition} for the {Completeness} of the {System} $\{e^{-\lambda_nt}\mid\operatorname{Re}\lambda_n>0\}$ in the {Spaces~}$C_0(\mathbb R_+)$ and $L^p(\mathbb R_+)$, $p>2$},
     journal = {Matemati\v{c}eskie zametki},
     pages = {831--842},
     publisher = {mathdoc},
     volume = {83},
     number = {6},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2008_83_6_a3/}
}
TY  - JOUR
AU  - I. O. Krasnobaev
TI  - A Necessary Condition for the Completeness of the System $\{e^{-\lambda_nt}\mid\operatorname{Re}\lambda_n>0\}$ in the Spaces~$C_0(\mathbb R_+)$ and $L^p(\mathbb R_+)$, $p>2$
JO  - Matematičeskie zametki
PY  - 2008
SP  - 831
EP  - 842
VL  - 83
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2008_83_6_a3/
LA  - ru
ID  - MZM_2008_83_6_a3
ER  - 
%0 Journal Article
%A I. O. Krasnobaev
%T A Necessary Condition for the Completeness of the System $\{e^{-\lambda_nt}\mid\operatorname{Re}\lambda_n>0\}$ in the Spaces~$C_0(\mathbb R_+)$ and $L^p(\mathbb R_+)$, $p>2$
%J Matematičeskie zametki
%D 2008
%P 831-842
%V 83
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2008_83_6_a3/
%G ru
%F MZM_2008_83_6_a3
I. O. Krasnobaev. A Necessary Condition for the Completeness of the System $\{e^{-\lambda_nt}\mid\operatorname{Re}\lambda_n>0\}$ in the Spaces~$C_0(\mathbb R_+)$ and $L^p(\mathbb R_+)$, $p>2$. Matematičeskie zametki, Tome 83 (2008) no. 6, pp. 831-842. http://geodesic.mathdoc.fr/item/MZM_2008_83_6_a3/

[1] L. Schwartz, Étude des sommes d'exponentielles réelles, Actualités Sci. Ind., 959, Hermann et Cie., Paris, 1943 | MR | Zbl

[2] A. M. Sedletskii, Klassy analiticheskikh preobrazovanii Fure i eksponentsialnye approksimatsii, Fizmatlit, M., 2005

[3] O. Százs, “Über die Approximation stetiger Functionen durch lineare Aggregate von Potenzen”, Math. Ann., 77:4 (1916), 482–496 | DOI | MR | Zbl

[4] R. Paley, N. Wiener, Fourier Transforms in the Complex Domain, Amer. Math. Soc. Colloq. Publ., 19, Amer. Math. Soc., New York, 1934 | MR | Zbl

[5] N. Levinson, “On the Szász–Müntz theorem”, J. Math. Anal. Appl., 48:1 (1974), 264–269 | DOI | MR | Zbl

[6] R. P. Boas, Entire Functions, Academic Press, New York, 1954 | MR | Zbl