On a Class of Hyperbolic Polynomials
Matematičeskie zametki, Tome 83 (2008) no. 6, pp. 825-830

Voir la notice de l'article provenant de la source Math-Net.Ru

In the present paper, we investigate whether the roots of a biquadratic equation determined by a pair of real symmetric positive definite matrices of order 3 and a three-dimensional vector of parameters are real. We obtain the explicit representation of the discriminant of such a polynomial as the sum of at most two squares.
Keywords: biquadratic equation, real roots, hyperbolic polynomial, biquadratic form, skew-symmetric matrix.
Mots-clés : trace of a matrix
@article{MZM_2008_83_6_a2,
     author = {N. A. Zhura},
     title = {On a {Class} of {Hyperbolic} {Polynomials}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {825--830},
     publisher = {mathdoc},
     volume = {83},
     number = {6},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2008_83_6_a2/}
}
TY  - JOUR
AU  - N. A. Zhura
TI  - On a Class of Hyperbolic Polynomials
JO  - Matematičeskie zametki
PY  - 2008
SP  - 825
EP  - 830
VL  - 83
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2008_83_6_a2/
LA  - ru
ID  - MZM_2008_83_6_a2
ER  - 
%0 Journal Article
%A N. A. Zhura
%T On a Class of Hyperbolic Polynomials
%J Matematičeskie zametki
%D 2008
%P 825-830
%V 83
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2008_83_6_a2/
%G ru
%F MZM_2008_83_6_a2
N. A. Zhura. On a Class of Hyperbolic Polynomials. Matematičeskie zametki, Tome 83 (2008) no. 6, pp. 825-830. http://geodesic.mathdoc.fr/item/MZM_2008_83_6_a2/