On a Class of Hyperbolic Polynomials
Matematičeskie zametki, Tome 83 (2008) no. 6, pp. 825-830.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the present paper, we investigate whether the roots of a biquadratic equation determined by a pair of real symmetric positive definite matrices of order 3 and a three-dimensional vector of parameters are real. We obtain the explicit representation of the discriminant of such a polynomial as the sum of at most two squares.
Keywords: biquadratic equation, real roots, hyperbolic polynomial, biquadratic form, skew-symmetric matrix.
Mots-clés : trace of a matrix
@article{MZM_2008_83_6_a2,
     author = {N. A. Zhura},
     title = {On a {Class} of {Hyperbolic} {Polynomials}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {825--830},
     publisher = {mathdoc},
     volume = {83},
     number = {6},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2008_83_6_a2/}
}
TY  - JOUR
AU  - N. A. Zhura
TI  - On a Class of Hyperbolic Polynomials
JO  - Matematičeskie zametki
PY  - 2008
SP  - 825
EP  - 830
VL  - 83
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2008_83_6_a2/
LA  - ru
ID  - MZM_2008_83_6_a2
ER  - 
%0 Journal Article
%A N. A. Zhura
%T On a Class of Hyperbolic Polynomials
%J Matematičeskie zametki
%D 2008
%P 825-830
%V 83
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2008_83_6_a2/
%G ru
%F MZM_2008_83_6_a2
N. A. Zhura. On a Class of Hyperbolic Polynomials. Matematičeskie zametki, Tome 83 (2008) no. 6, pp. 825-830. http://geodesic.mathdoc.fr/item/MZM_2008_83_6_a2/

[1] F. I. Fedorov, Optika anizotropnykh sred, Izd-vo AN BSSR, Minsk, 1958

[2] R. Courant, D. Hilbert, Methods of Mathematical Physics, vol. II: Partial differential equations. By R. Courant, Intersci. Publ., New York–London, 1962 ; R. Kurant, Uravneniya s chastnymi proizvodnymi, Mir, M., 1964 | MR | Zbl | MR | Zbl

[3] F. John, “Algebraic conditions for hyperbolicity of systems of partial differential equations”, Comm. Pure Appl. Math., 31:1 (1978), 89–106 | MR | Zbl

[4] L. Gårding, “Hyperbolic differential equations”, Perspectives in Mathematics, Anniversary of Oberwolfach, Birkhäuser, Basel, 1984, 215–247 | MR | Zbl

[5] N. A. Zhura, “Zadacha Koshi dlya sistemy uravnenii kristallooptiki”, Dokl. RAN, 412:6 (2007), 727–731

[6] D. Hilbert, “Über die Darstellung definierter Formen als Summe von Formenquadraten”, Math. Ann., 32:3 (1888), 342–350 | DOI | MR | Zbl