On a Class of Hyperbolic Polynomials
Matematičeskie zametki, Tome 83 (2008) no. 6, pp. 825-830
Voir la notice de l'article provenant de la source Math-Net.Ru
In the present paper, we investigate whether the roots of a biquadratic equation determined by a pair of real symmetric positive definite matrices of order 3 and a three-dimensional vector of parameters are real. We obtain the explicit representation of the discriminant of such a polynomial as the sum of at most two squares.
Keywords:
biquadratic equation, real roots, hyperbolic polynomial, biquadratic form, skew-symmetric matrix.
Mots-clés : trace of a matrix
Mots-clés : trace of a matrix
@article{MZM_2008_83_6_a2,
author = {N. A. Zhura},
title = {On a {Class} of {Hyperbolic} {Polynomials}},
journal = {Matemati\v{c}eskie zametki},
pages = {825--830},
publisher = {mathdoc},
volume = {83},
number = {6},
year = {2008},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2008_83_6_a2/}
}
N. A. Zhura. On a Class of Hyperbolic Polynomials. Matematičeskie zametki, Tome 83 (2008) no. 6, pp. 825-830. http://geodesic.mathdoc.fr/item/MZM_2008_83_6_a2/