On a Class of Sine-Type Functions
Matematičeskie zametki, Tome 83 (2008) no. 6, pp. 941-954
Voir la notice de l'article provenant de la source Math-Net.Ru
We study an infinite product $F_\Lambda(z)$ with zeros $\lambda_n=n+l(|n|)$, $n\in\mathbb Z$, where $l(t)$ is a concave function and $l(t)=o(t)$. We obtain a test for $F_\Lambda(z)$ to belong to the class of sine-type functions. For the particular case in which $l(t)$ is a regularly varying function, we obtain sharp asymptotic estimates for $F_\Lambda(z)$.
Keywords:
sine-type function, concave function, regularly varying function, hypergeometric function, Riesz basis, analytic function.
@article{MZM_2008_83_6_a12,
author = {A. A. Yukhimenko},
title = {On a {Class} of {Sine-Type} {Functions}},
journal = {Matemati\v{c}eskie zametki},
pages = {941--954},
publisher = {mathdoc},
volume = {83},
number = {6},
year = {2008},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2008_83_6_a12/}
}
A. A. Yukhimenko. On a Class of Sine-Type Functions. Matematičeskie zametki, Tome 83 (2008) no. 6, pp. 941-954. http://geodesic.mathdoc.fr/item/MZM_2008_83_6_a12/