Solvability of a Class of Integro-Differential Equations of First Order with Variable Coefficients
Matematičeskie zametki, Tome 83 (2008) no. 6, pp. 933-940.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the present paper, we consider a class of linear integro-differential equations of first order with a stochastic kernel and with variable coefficients on the semiaxis. These equations have important applications in physical kinetics. By combining special factorization methods with methods involving integral Fredholm equations of the second kind, we can construct solutions of such equations in the Sobolev space $W^1_1(\mathbb R^+)$. In certain singular cases, we can also describe the structure of the obtained solutions.
Keywords: integro-differential equation of first order, stochastic kernel, integral Fredholm equation of the second kind, factorization method, Sobolev space $W^1_1(\mathbb R^+)$.
@article{MZM_2008_83_6_a11,
     author = {Kh. A. Khachatryan},
     title = {Solvability of a {Class} of {Integro-Differential} {Equations} of {First} {Order} with {Variable} {Coefficients}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {933--940},
     publisher = {mathdoc},
     volume = {83},
     number = {6},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2008_83_6_a11/}
}
TY  - JOUR
AU  - Kh. A. Khachatryan
TI  - Solvability of a Class of Integro-Differential Equations of First Order with Variable Coefficients
JO  - Matematičeskie zametki
PY  - 2008
SP  - 933
EP  - 940
VL  - 83
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2008_83_6_a11/
LA  - ru
ID  - MZM_2008_83_6_a11
ER  - 
%0 Journal Article
%A Kh. A. Khachatryan
%T Solvability of a Class of Integro-Differential Equations of First Order with Variable Coefficients
%J Matematičeskie zametki
%D 2008
%P 933-940
%V 83
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2008_83_6_a11/
%G ru
%F MZM_2008_83_6_a11
Kh. A. Khachatryan. Solvability of a Class of Integro-Differential Equations of First Order with Variable Coefficients. Matematičeskie zametki, Tome 83 (2008) no. 6, pp. 933-940. http://geodesic.mathdoc.fr/item/MZM_2008_83_6_a11/

[1] E. M. Lifshits, L. M. Pitaevskii, Fizicheskaya kinetika, Teoreticheskaya fizika, 10, Nauka, M., 1979 | MR | Zbl

[2] A. V. Latyshev, A. A. Yushkanov, “Tochnoe reshenie zadachi o prokhozhdenii toka cherez granitsu razdela kristallitov v metalle”, FTT, 43:10 (2001), 1744–1750

[3] Kh. A. Khachatryan, “O nekotorykh integro-differentsialnykh uravneniyakh, voznikayuschikh v fizicheskoi kinetike”, Izv. NAN RA. Ser. matem., 39:3 (2004), 72–80 | MR

[4] Kh. A. Khachatryan, O faktorizatsionnykh metodakh resheniya nekotorogo klassa integralnykh i integro-differentsialnykh uravnenii na poluosi, Dis. $\dots$ kand. fiz.-matem. nauk, Erevan, 2005

[5] S. G. Krein, Yu. N. Petunin, E. M. Semenov, Interpolyatsiya lineinykh operatorov, Nauka, M., 1978 | MR | Zbl

[6] V. S. Vladimirov, V. V. Zharinov, Uravneniya matematicheskoi fiziki, Fizmatlit, M., 2000 | Zbl

[7] A. N. Kolmogorov, V. S. Fomin, Elementy teorii funktsii i funktsionalnogo analiza, Nauka, M., 1981 | MR | Zbl