Spectral Theory for Operator Matrices Related to Models in Mechanics
Matematičeskie zametki, Tome 83 (2008) no. 6, pp. 923-932
Voir la notice de l'article provenant de la source Math-Net.Ru
We derive various properties of the operator matrix
$$
\mathscr A=\begin{vmatrix}
0
\\
-A_0-D
\end{vmatrix},
$$
where $A_0$ is a uniformly positive operator and $A_0^{-1/2}DA_0^{-1/2}$ is a bounded nonnegative operator in a Hilbert space $H$. Such operator matrices are associated with second-order problems of the form $\ddot z(t)+A_0z(t)+D\dot z(t)=0$, which are used as models for transverse motions of thin beams in the presence of damping.
Keywords:
operator matrices, second-order partial differential equations, spectrum, Riesz basis, definitizable operator, Krein space, analytic semigroup.
@article{MZM_2008_83_6_a10,
author = {C. Trunk},
title = {Spectral {Theory} for {Operator} {Matrices} {Related} to {Models} in {Mechanics}},
journal = {Matemati\v{c}eskie zametki},
pages = {923--932},
publisher = {mathdoc},
volume = {83},
number = {6},
year = {2008},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2008_83_6_a10/}
}
C. Trunk. Spectral Theory for Operator Matrices Related to Models in Mechanics. Matematičeskie zametki, Tome 83 (2008) no. 6, pp. 923-932. http://geodesic.mathdoc.fr/item/MZM_2008_83_6_a10/