Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2008_83_6_a1, author = {A. S. Gordienko}, title = {The {Regev} {Conjecture} and {Cocharacters} for {Identities} of {Associative} {Algebras} of {PI-exponent~1} and~2}, journal = {Matemati\v{c}eskie zametki}, pages = {815--824}, publisher = {mathdoc}, volume = {83}, number = {6}, year = {2008}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2008_83_6_a1/} }
TY - JOUR AU - A. S. Gordienko TI - The Regev Conjecture and Cocharacters for Identities of Associative Algebras of PI-exponent~1 and~2 JO - Matematičeskie zametki PY - 2008 SP - 815 EP - 824 VL - 83 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2008_83_6_a1/ LA - ru ID - MZM_2008_83_6_a1 ER -
A. S. Gordienko. The Regev Conjecture and Cocharacters for Identities of Associative Algebras of PI-exponent~1 and~2. Matematičeskie zametki, Tome 83 (2008) no. 6, pp. 815-824. http://geodesic.mathdoc.fr/item/MZM_2008_83_6_a1/
[1] A. Giambruno, M. Zaicev, “Exponential codimension growth of PI algebras: an exact estimate”, Adv. Math., 142:2 (1999), 221–243 | DOI | MR | Zbl
[2] V. S. Drensky, “Relations for the cocharacter sequences of $T$-ideals”, Proceedings of the International Conference on Algebra Dedicated to the Memory of A. I. Mal'cev, part 2 (Novosibirsk, 1989), Contemp. Math., 131, Amer. Math. Soc., Providence, RI, 1992, 285–300 | MR | Zbl
[3] A. Regev, “Codimensions and trace codimensions of matrices are asymptotically equal”, Israel J. Math., 48:2–3 (1984), 246–250 | DOI | MR | Zbl
[4] A. Giambruno, M. Zaicev, “Minimal varieties of algebras of exponential growth”, Electron. Res. Announc. Amer. Math. Soc., 6 (2000), 40–44 | DOI | MR | Zbl
[5] D. Krakowski, A. Regev, “The polynomial identities of the Grassmann algebra”, Trans. Amer. Math. Soc., 181 (1973), 429–438 | DOI | MR | Zbl
[6] A. S. Gordienko, “Korazmernost i kodlina odnoi pyatimernoi algebry”, Vestn. Mosk. un-ta. Ser. 1. Matem., mekh., 2006, no. 4, 18–25
[7] A. S. Gordienko, “Korazmernosti kommutatora dliny $4$”, UMN, 62:1 (2007), 191–192 | MR
[8] V. S. Drensky, Free Algebras and $\mathrm{PI}$-algebras, Grad. Course in Algebra, Springer-Verlag Singapore, Singapore, 2000 | MR | Zbl
[9] Yu. A. Bakhturin, Tozhdestva v algebrakh Li, Nauka, M., 1985 | MR | Zbl
[10] A. R. Kemer, “Predstavimost privedennykh algebr”, Algebra i logika, 27:3 (1988), 274–294 | MR | Zbl