Stable Cohomology of Compact Homogeneous Spaces
Matematičeskie zametki, Tome 83 (2008) no. 6, pp. 803-814

Voir la notice de l'article provenant de la source Math-Net.Ru

The cohomology of certain compact homogeneous spaces is studied. The notion of stable cohomology (invariant under the passage to a finite covering) is introduced; examples of the calculation of this cohomology (Theorem 1) and its application to the study of the structure of compact homogeneous spaces (Theorem 2) are given. Several conjectures about properties of stable cohomology related to various areas of mathematics (such as topology and the cohomology of discrete (in particular, polycyclic) groups) are stated.
Keywords: stable cohomology, compact homogeneous space, finite covering, Seifert fibration.
Mots-clés : polycyclic group, Lie group, homotopy group
@article{MZM_2008_83_6_a0,
     author = {V. V. Gorbatsevich},
     title = {Stable {Cohomology} of {Compact} {Homogeneous} {Spaces}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {803--814},
     publisher = {mathdoc},
     volume = {83},
     number = {6},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2008_83_6_a0/}
}
TY  - JOUR
AU  - V. V. Gorbatsevich
TI  - Stable Cohomology of Compact Homogeneous Spaces
JO  - Matematičeskie zametki
PY  - 2008
SP  - 803
EP  - 814
VL  - 83
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2008_83_6_a0/
LA  - ru
ID  - MZM_2008_83_6_a0
ER  - 
%0 Journal Article
%A V. V. Gorbatsevich
%T Stable Cohomology of Compact Homogeneous Spaces
%J Matematičeskie zametki
%D 2008
%P 803-814
%V 83
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2008_83_6_a0/
%G ru
%F MZM_2008_83_6_a0
V. V. Gorbatsevich. Stable Cohomology of Compact Homogeneous Spaces. Matematičeskie zametki, Tome 83 (2008) no. 6, pp. 803-814. http://geodesic.mathdoc.fr/item/MZM_2008_83_6_a0/