Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2008_83_5_a7, author = {A. S. Sadullaev}, title = {On {Analytic} {Multifunctions}}, journal = {Matemati\v{c}eskie zametki}, pages = {715--721}, publisher = {mathdoc}, volume = {83}, number = {5}, year = {2008}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2008_83_5_a7/} }
A. S. Sadullaev. On Analytic Multifunctions. Matematičeskie zametki, Tome 83 (2008) no. 5, pp. 715-721. http://geodesic.mathdoc.fr/item/MZM_2008_83_5_a7/
[1] K. Oka, “Note sur les familles de fonctions analytiques multiformes etc.”, J. Sci. Hiroshima Univ. Ser. A, 4 (1934), 93–98 | Zbl
[2] T. Nishino, “Sur les ensembles pseudoconcaves”, J. Math. Kyoto Univ., 1 (1962), 225–245 | MR | Zbl
[3] H. Yamaguchi, “Sur une uniformité des surfaces constantes d'une fonction entière de deux variables complexes”, J. Math. Kyoto Univ., 13 (1973), 417–433 | MR | Zbl
[4] Z. Slodkowski, “Analytic set-valued functions and spectra”, Math. Ann., 256:3 (1981), 363–386 | DOI | MR | Zbl
[5] Z. Slodkowski, “An analytic set-valued selection and its applications to the corona theorem, to polynomial hulls and joint spectra”, Trans. Amer. Math. Soc., 294:1 (1986), 367–377 | DOI | MR | Zbl
[6] Z. Slodkowski, “Analytic multifunctions: $q$-plurisubharmonic functions and uniform algebras”, Proceedings of the conference on Banach algebras and several complex variables (New Haven, Conn., 1983), Contemp. Math., 32, Amer. Math. Soc., Providence, RI, 1984, 243–258 | MR | Zbl
[7] Z. Slodkowski, “An open mapping theorem for analytic multifunctions”, Studia Math., 122:2 (1997), 117–122 | MR | Zbl
[8] B. Berndtsson, T. J. Ransford, “Analytic multifunction, the $\overline{\partial}$ equation and a proof of the corona theorem”, Pacific J. Math., 124:1 (1986), 57–72 | MR | Zbl
[9] H. Alexander, J. Wermer, “On the approximation of singularity sets by analytic varieties”, Pacific J. Math., 104:2 (1983), 263–268 | MR | Zbl
[10] H. Alexander, J. Wermer, “On the approximation of singularity sets by analytic varieties. II”, Michigan Math. J., 32:2 (1985), 227–235 | DOI | MR | Zbl
[11] H. Alexander, J. Wermer, “Polynomial hulls with convex fibers”, Math. Ann., 271:1 (1985), 99–109 | DOI | MR | Zbl
[12] H. Alexander, J. Wermer, “Polynomial hulls of sets with intervals as fibers”, Complex Var. Theory Appl., 11:1 (1989), 11–19 | MR | Zbl
[13] B. Aupetit, J. Wermer, “Capacity and uniform algebras”, J. Funct. Anal., 28:3 (1978), 386–400 | DOI | MR | Zbl
[14] B. Aupetit, Propriétés Spectrales des Algèbres de Banach, Lecture Notes in Math., 735, Springer, Berlin–Heidelberg–New York, 1979 | DOI | MR | Zbl
[15] J. Wermer, “Subharmonicity and hulls”, Pacific J. Math., 58:1 (1975), 283–290 | MR | Zbl
[16] J. Wermer, “Capacity and uniform algebras”, Harmonic Analysis in Euclidean Spaces, part 1 (Proc. Sympos. Pure Math., Williams Coll., Williamstown, Mass., 1978), Proc. Sympos. Pure Math., XXXV, Amer. Math. Soc., Providence, RI, 1979, 445–449 | MR | Zbl
[17] J. Wermer, “Potential theory and function algebras”, Visiting scholars' lectures – 1980 (Lubbock, TX, 1980), Math. Ser., 14, Texas Tech. Univ., Lubbock, TX, 1981, 113–125 | MR | Zbl
[18] J. Wermer, “Maximum modulus algebras and singularity sets”, Proc. Roy. Soc. Edinburgh Sect. A, 86:3–4 (1980), 327–331 | MR | Zbl
[19] B. V. Shabat, Vvedenie v kompleksnyi analiz, ch. 2: Funktsii neskolkikh peremennykh, Nauka, M., 1965 | MR | Zbl
[20] A. S. Sadullaev, E. M. Chirka, “O prodolzhenii funktsii s polyarnymi osobennostyami”, Matem. sb., 132:3 (1987), 383–390 | MR | Zbl
[21] A. S. Sadullaev, “Plyurisubgarmonicheskie mery i emkosti na kompleksnykh mnogoobraziyakh”, UMN, 36:4 (1981), 53–105 | MR | Zbl
[22] A. S. Sadullaev, “Ratsionalnye approksimatsii i plyuripolyarnye mnozhestva”, Matem. sb., 119:1 (1982), 96–118 | MR | Zbl