Estimates for a Group of $\varphi$ Deviations and the Strong Summability of Taylor Series of Functions of Class $A^\psi H_\infty(D)$
Matematičeskie zametki, Tome 83 (2008) no. 5, pp. 696-704

Voir la notice de l'article provenant de la source Math-Net.Ru

We obtain estimates of the rate of convergence of strong $\varphi$ means of $\Lambda$ methods of summation of Taylor series on some classes of analytic and bounded functions in the disk.
Keywords: Taylor series, strong summability, $\varphi$ deviation, $\varphi$ Vallée-Poussin mean, Fourier series, Cauchy-type integral, convex function, Hausdorff–Young theorem.
@article{MZM_2008_83_5_a5,
     author = {R. A. Lasuriya},
     title = {Estimates for a {Group} of $\varphi$ {Deviations} and the {Strong} {Summability} of {Taylor} {Series} of {Functions} of {Class} $A^\psi H_\infty(D)$},
     journal = {Matemati\v{c}eskie zametki},
     pages = {696--704},
     publisher = {mathdoc},
     volume = {83},
     number = {5},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2008_83_5_a5/}
}
TY  - JOUR
AU  - R. A. Lasuriya
TI  - Estimates for a Group of $\varphi$ Deviations and the Strong Summability of Taylor Series of Functions of Class $A^\psi H_\infty(D)$
JO  - Matematičeskie zametki
PY  - 2008
SP  - 696
EP  - 704
VL  - 83
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2008_83_5_a5/
LA  - ru
ID  - MZM_2008_83_5_a5
ER  - 
%0 Journal Article
%A R. A. Lasuriya
%T Estimates for a Group of $\varphi$ Deviations and the Strong Summability of Taylor Series of Functions of Class $A^\psi H_\infty(D)$
%J Matematičeskie zametki
%D 2008
%P 696-704
%V 83
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2008_83_5_a5/
%G ru
%F MZM_2008_83_5_a5
R. A. Lasuriya. Estimates for a Group of $\varphi$ Deviations and the Strong Summability of Taylor Series of Functions of Class $A^\psi H_\infty(D)$. Matematičeskie zametki, Tome 83 (2008) no. 5, pp. 696-704. http://geodesic.mathdoc.fr/item/MZM_2008_83_5_a5/