Parabolicity of a Quasihydrodynamic System of Equations and the Stability of its Small Perturbations
Matematičeskie zametki, Tome 83 (2008) no. 5, pp. 667-682.

Voir la notice de l'article provenant de la source Math-Net.Ru

We establish that the quasihydrodynamic system of equations of motion of a perfect polytropic gas is parabolic (in the sense of Petrovskii). We study the stability of small perturbations on a constant background and, for the Cauchy problem and the initial boundary-value problems for the corresponding linearized system, we obtain uniform (on the infinite time interval) estimates of relative perturbations. The corresponding results are also derived in the barotropic case for a general equation of state.
Mots-clés : quasihydrodynamic system of equations
Keywords: Petrovskii parabolic system, stability of small perturbations, Cauchy problem, perfect polytropic gas, barotropic system.
@article{MZM_2008_83_5_a3,
     author = {A. A. Zlotnik},
     title = {Parabolicity of a {Quasihydrodynamic} {System} of {Equations} and the {Stability} of its {Small} {Perturbations}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {667--682},
     publisher = {mathdoc},
     volume = {83},
     number = {5},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2008_83_5_a3/}
}
TY  - JOUR
AU  - A. A. Zlotnik
TI  - Parabolicity of a Quasihydrodynamic System of Equations and the Stability of its Small Perturbations
JO  - Matematičeskie zametki
PY  - 2008
SP  - 667
EP  - 682
VL  - 83
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2008_83_5_a3/
LA  - ru
ID  - MZM_2008_83_5_a3
ER  - 
%0 Journal Article
%A A. A. Zlotnik
%T Parabolicity of a Quasihydrodynamic System of Equations and the Stability of its Small Perturbations
%J Matematičeskie zametki
%D 2008
%P 667-682
%V 83
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2008_83_5_a3/
%G ru
%F MZM_2008_83_5_a3
A. A. Zlotnik. Parabolicity of a Quasihydrodynamic System of Equations and the Stability of its Small Perturbations. Matematičeskie zametki, Tome 83 (2008) no. 5, pp. 667-682. http://geodesic.mathdoc.fr/item/MZM_2008_83_5_a3/

[1] Yu. V. Sheretov, Matematicheskoe modelirovanie techenii zhidkosti i gaza na osnove kvazigidrodinamicheskikh i kvazigazodinamicheskikh uravnenii, Izd-vo TvGU, Tver, 2000

[2] B. N. Chetverushkin, Kineticheskie skhemy i kvazigazodinamicheskaya sistema uravnenii, Prikladnaya matematika i informatika, MAKS Press, M., 2004

[3] T. G. Elizarova, Matematicheskie modeli i chislennye metody v dinamike zhidkosti i gaza, Fiz. f-t MGU, M., 2005

[4] A. A. Zlotnik, “Klassifikatsiya nekotorykh modifikatsii sistemy uravnenii Eilera”, Dokl. RAN, 407:6 (2006), 747–751 | MR

[5] L. V. Dorodnitsyn, “Ob ustoichivosti malykh kolebanii v kvazigazodinamicheskoi sisteme uravnenii”, ZhVM i MF, 44:7 (2004), 1299–1305 | MR | Zbl

[6] A. A. Zlotnik, I. A. Zlotnik, “Kriterii ustoichivosti malykh vozmuschenii dlya kvazigazodinamicheskoi sistemy uravnenii”, ZhVM i MF, 46:2 (2006), 262–269 | MR | Zbl

[7] I. G. Petrovskii, Izbrannye trudy: Sistemy uravnenii s chastnymi proizvodnymi. Algebraicheskaya geometriya, Nauka, M., 1986 | MR | Zbl

[8] S. D. Eidelman, Parabolicheskie sistemy, Nauka, M., 1964 | MR | Zbl

[9] O. A. Ladyzhenskaya, V. A. Solonnikov, N. N. Uraltseva, Lineinye i kvazilineinye uravneniya parabolicheskogo tipa, Nauka, M., 1967 | MR | Zbl

[10] Yu. V. Sheretov, “Analiz zadachi o rasprostranenii zvuka dlya linearizovannykh KGDD-sistem”, Primenenie funktsionalnogo analiza v teorii priblizhenii, Sb. nauch. trudov, Izd-vo TvGU, Tver, 2001, 178–191