Parabolicity of a Quasihydrodynamic System of Equations and the Stability of its Small Perturbations
Matematičeskie zametki, Tome 83 (2008) no. 5, pp. 667-682
Voir la notice de l'article provenant de la source Math-Net.Ru
We establish that the quasihydrodynamic system of equations of motion of a perfect polytropic gas is parabolic (in the sense of Petrovskii). We study the stability of small perturbations on a constant background and, for
the Cauchy problem and the initial boundary-value problems for the corresponding linearized system, we obtain uniform (on the infinite time interval) estimates of relative perturbations. The corresponding results are also derived in the barotropic case for a general equation of state.
Mots-clés :
quasihydrodynamic system of equations
Keywords: Petrovskii parabolic system, stability of small perturbations, Cauchy problem, perfect polytropic gas, barotropic system.
Keywords: Petrovskii parabolic system, stability of small perturbations, Cauchy problem, perfect polytropic gas, barotropic system.
@article{MZM_2008_83_5_a3,
author = {A. A. Zlotnik},
title = {Parabolicity of a {Quasihydrodynamic} {System} of {Equations} and the {Stability} of its {Small} {Perturbations}},
journal = {Matemati\v{c}eskie zametki},
pages = {667--682},
publisher = {mathdoc},
volume = {83},
number = {5},
year = {2008},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2008_83_5_a3/}
}
TY - JOUR AU - A. A. Zlotnik TI - Parabolicity of a Quasihydrodynamic System of Equations and the Stability of its Small Perturbations JO - Matematičeskie zametki PY - 2008 SP - 667 EP - 682 VL - 83 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2008_83_5_a3/ LA - ru ID - MZM_2008_83_5_a3 ER -
A. A. Zlotnik. Parabolicity of a Quasihydrodynamic System of Equations and the Stability of its Small Perturbations. Matematičeskie zametki, Tome 83 (2008) no. 5, pp. 667-682. http://geodesic.mathdoc.fr/item/MZM_2008_83_5_a3/