Parabolicity of a Quasihydrodynamic System of Equations and the Stability of its Small Perturbations
Matematičeskie zametki, Tome 83 (2008) no. 5, pp. 667-682

Voir la notice de l'article provenant de la source Math-Net.Ru

We establish that the quasihydrodynamic system of equations of motion of a perfect polytropic gas is parabolic (in the sense of Petrovskii). We study the stability of small perturbations on a constant background and, for the Cauchy problem and the initial boundary-value problems for the corresponding linearized system, we obtain uniform (on the infinite time interval) estimates of relative perturbations. The corresponding results are also derived in the barotropic case for a general equation of state.
Mots-clés : quasihydrodynamic system of equations
Keywords: Petrovskii parabolic system, stability of small perturbations, Cauchy problem, perfect polytropic gas, barotropic system.
@article{MZM_2008_83_5_a3,
     author = {A. A. Zlotnik},
     title = {Parabolicity of a {Quasihydrodynamic} {System} of {Equations} and the {Stability} of its {Small} {Perturbations}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {667--682},
     publisher = {mathdoc},
     volume = {83},
     number = {5},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2008_83_5_a3/}
}
TY  - JOUR
AU  - A. A. Zlotnik
TI  - Parabolicity of a Quasihydrodynamic System of Equations and the Stability of its Small Perturbations
JO  - Matematičeskie zametki
PY  - 2008
SP  - 667
EP  - 682
VL  - 83
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2008_83_5_a3/
LA  - ru
ID  - MZM_2008_83_5_a3
ER  - 
%0 Journal Article
%A A. A. Zlotnik
%T Parabolicity of a Quasihydrodynamic System of Equations and the Stability of its Small Perturbations
%J Matematičeskie zametki
%D 2008
%P 667-682
%V 83
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2008_83_5_a3/
%G ru
%F MZM_2008_83_5_a3
A. A. Zlotnik. Parabolicity of a Quasihydrodynamic System of Equations and the Stability of its Small Perturbations. Matematičeskie zametki, Tome 83 (2008) no. 5, pp. 667-682. http://geodesic.mathdoc.fr/item/MZM_2008_83_5_a3/