Structural Properties in Classes of Holomorphic Functions on the Half-Plane
Matematičeskie zametki, Tome 83 (2008) no. 5, pp. 661-666.

Voir la notice de l'article provenant de la source Math-Net.Ru

Diverse structural properties for classes of holomorphic functions (defined by means of maximal functions) are proved, including the Riesz convergence theorem and a factorization theorem.
Keywords: holomorphic function, vertical maximal function, Riesz convergence theorem, Krylov function class, subharmonic function, Banach space.
Mots-clés : harmonic majorant
@article{MZM_2008_83_5_a2,
     author = {D. A. Efimov},
     title = {Structural {Properties} in {Classes} of {Holomorphic} {Functions} on the {Half-Plane}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {661--666},
     publisher = {mathdoc},
     volume = {83},
     number = {5},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2008_83_5_a2/}
}
TY  - JOUR
AU  - D. A. Efimov
TI  - Structural Properties in Classes of Holomorphic Functions on the Half-Plane
JO  - Matematičeskie zametki
PY  - 2008
SP  - 661
EP  - 666
VL  - 83
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2008_83_5_a2/
LA  - ru
ID  - MZM_2008_83_5_a2
ER  - 
%0 Journal Article
%A D. A. Efimov
%T Structural Properties in Classes of Holomorphic Functions on the Half-Plane
%J Matematičeskie zametki
%D 2008
%P 661-666
%V 83
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2008_83_5_a2/
%G ru
%F MZM_2008_83_5_a2
D. A. Efimov. Structural Properties in Classes of Holomorphic Functions on the Half-Plane. Matematičeskie zametki, Tome 83 (2008) no. 5, pp. 661-666. http://geodesic.mathdoc.fr/item/MZM_2008_83_5_a2/

[1] P. Kusis, Vvedenie v teoriyu prostranstv $H^p$. S prilozheniem dokazatelstva Volffa teoremy o korone, Mir, M., 1984 | MR | Zbl

[2] N. Mochizuki, “Nevanlinna and Smirnov classes on the upper half plane”, Hokkaido Math. J., 20:3 (1991), 609–620 | MR | Zbl

[3] L. M. Ganzhula, “Ob odnoi $F$-algebre golomorfnykh funktsii v verkhnei poluploskosti”, Math. Montisnigri, 12 (2000), 33–45 | MR

[4] Dzh. Garnett, Ogranichennye analiticheskie funktsii, Mir, M., 1984 | MR | Zbl

[5] I. I. Privalov, “Obobschenie teoremy Fatou”, Matem. sb., 31:2 (1923), 232–235 | Zbl

[6] V. I. Smirnov, Kurs vysshei matematiki, t. 5, Fizmatlit, M., 1959 | MR | Zbl