Structural Properties in Classes of Holomorphic Functions on the Half-Plane
Matematičeskie zametki, Tome 83 (2008) no. 5, pp. 661-666
Voir la notice de l'article provenant de la source Math-Net.Ru
Diverse structural properties for classes of holomorphic functions (defined by means of maximal functions) are proved, including the Riesz convergence theorem and a factorization theorem.
Keywords:
holomorphic function, vertical maximal function, Riesz convergence theorem, Krylov function class, subharmonic function, Banach space.
Mots-clés : harmonic majorant
Mots-clés : harmonic majorant
@article{MZM_2008_83_5_a2,
author = {D. A. Efimov},
title = {Structural {Properties} in {Classes} of {Holomorphic} {Functions} on the {Half-Plane}},
journal = {Matemati\v{c}eskie zametki},
pages = {661--666},
publisher = {mathdoc},
volume = {83},
number = {5},
year = {2008},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2008_83_5_a2/}
}
D. A. Efimov. Structural Properties in Classes of Holomorphic Functions on the Half-Plane. Matematičeskie zametki, Tome 83 (2008) no. 5, pp. 661-666. http://geodesic.mathdoc.fr/item/MZM_2008_83_5_a2/