Solution of the Gibbs Paradox in the Framework of Classical Mechanics (Statistical Physics) and Chrystalizations of the Gas $C_{60}$
Matematičeskie zametki, Tome 83 (2008) no. 5, pp. 787-791.

Voir la notice de l'article provenant de la source Math-Net.Ru

Keywords: Gibbs paradox, chrystalizations of the gas $C_{60}$, Bose–Einstein distribution, ideal gas, clusterization, phase transition of the first kind, Hamiltonian function.
@article{MZM_2008_83_5_a15,
     author = {V. P. Maslov},
     title = {Solution of the {Gibbs} {Paradox} in the {Framework} of {Classical} {Mechanics} {(Statistical} {Physics)} and {Chrystalizations} of the {Gas} $C_{60}$},
     journal = {Matemati\v{c}eskie zametki},
     pages = {787--791},
     publisher = {mathdoc},
     volume = {83},
     number = {5},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2008_83_5_a15/}
}
TY  - JOUR
AU  - V. P. Maslov
TI  - Solution of the Gibbs Paradox in the Framework of Classical Mechanics (Statistical Physics) and Chrystalizations of the Gas $C_{60}$
JO  - Matematičeskie zametki
PY  - 2008
SP  - 787
EP  - 791
VL  - 83
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2008_83_5_a15/
LA  - ru
ID  - MZM_2008_83_5_a15
ER  - 
%0 Journal Article
%A V. P. Maslov
%T Solution of the Gibbs Paradox in the Framework of Classical Mechanics (Statistical Physics) and Chrystalizations of the Gas $C_{60}$
%J Matematičeskie zametki
%D 2008
%P 787-791
%V 83
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2008_83_5_a15/
%G ru
%F MZM_2008_83_5_a15
V. P. Maslov. Solution of the Gibbs Paradox in the Framework of Classical Mechanics (Statistical Physics) and Chrystalizations of the Gas $C_{60}$. Matematičeskie zametki, Tome 83 (2008) no. 5, pp. 787-791. http://geodesic.mathdoc.fr/item/MZM_2008_83_5_a15/

[1] V. P. Maslov, Russ. J. Math. Phys., 14:1 (2007), 66–95 | DOI | MR | Zbl

[2] V. V. Kozlov, Teplovoe ravnovesie po Gibbsu i Puankare, Sovremennaya matematika, In-t kompyuternykh issledovanii, M.–Izhevsk, 2002 | MR | Zbl

[3] A. N. Shiryaev, Veroyatnost, kn. 1: Elementarnaya teoriya veroyatnostei. Matematicheskie osnovaniya. Predelnye teoremy, MTsNMO, M., 2004

[4] V. P. Maslov, V. E. Nazaikinskii, Matem. zametki, 83:2 (2008), 232–263

[5] V. P. Maslov, V. E. Nazaikinskii, Matem. zametki, 83:3 (2008), 381–401

[6] V. P. Maslov, Kvantovaya ekonomika, Nauka, M., 2006

[7] L. N. Yakub, Fizika nizkikh temperatur, 19 (1993), 726