On an Analog of de Leeuw and Mirkil Theorem for Operators with Variable Coeficients
Matematičeskie zametki, Tome 83 (2008) no. 5, pp. 783-786
Voir la notice de l'article provenant de la source Math-Net.Ru
Keywords:
elliptic operator, quasielliptic operator, coercive differential operator, a priori bounds, quasihomogeneous symbol, Sobolev space.
@article{MZM_2008_83_5_a14,
author = {D. V. Lymanskyi and M. M. Malamud},
title = {On an {Analog} of de {Leeuw} and {Mirkil} {Theorem} for {Operators} with {Variable} {Coeficients}},
journal = {Matemati\v{c}eskie zametki},
pages = {783--786},
publisher = {mathdoc},
volume = {83},
number = {5},
year = {2008},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2008_83_5_a14/}
}
TY - JOUR AU - D. V. Lymanskyi AU - M. M. Malamud TI - On an Analog of de Leeuw and Mirkil Theorem for Operators with Variable Coeficients JO - Matematičeskie zametki PY - 2008 SP - 783 EP - 786 VL - 83 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2008_83_5_a14/ LA - ru ID - MZM_2008_83_5_a14 ER -
D. V. Lymanskyi; M. M. Malamud. On an Analog of de Leeuw and Mirkil Theorem for Operators with Variable Coeficients. Matematičeskie zametki, Tome 83 (2008) no. 5, pp. 783-786. http://geodesic.mathdoc.fr/item/MZM_2008_83_5_a14/