On Solutions of the Schlesinger Equation in the Neigborhood of the Malgrange $\Theta$-Divisor
Matematičeskie zametki, Tome 83 (2008) no. 5, pp. 779-782
Cet article a éte moissonné depuis la source Math-Net.Ru
Keywords:
Schlesinger equation, fundamental group, local $\tau$ function, Fuchs system, Riemann sphere.
Mots-clés : Malgrange divisor, Bolibrukh's method, monodromy
Mots-clés : Malgrange divisor, Bolibrukh's method, monodromy
@article{MZM_2008_83_5_a13,
author = {R. R. Gontsov},
title = {On {Solutions} of the {Schlesinger} {Equation} in the {Neigborhood} of the {Malgrange} $\Theta${-Divisor}},
journal = {Matemati\v{c}eskie zametki},
pages = {779--782},
year = {2008},
volume = {83},
number = {5},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2008_83_5_a13/}
}
R. R. Gontsov. On Solutions of the Schlesinger Equation in the Neigborhood of the Malgrange $\Theta$-Divisor. Matematičeskie zametki, Tome 83 (2008) no. 5, pp. 779-782. http://geodesic.mathdoc.fr/item/MZM_2008_83_5_a13/
[1] B. Malgrange, Mathematics and physics (Paris, 1979/1982), Progr. Math., 37., Birkhäuser Boston, Boston, MA, 1983, 401–426 | MR | Zbl
[2] M. Jimbo, T. Miwa, Phys. D, 2:3 (1981), 407–448 | DOI | MR
[3] A. A. Bolibrukh, Matem. zametki, 74:2 (2003), 184–191 | MR | Zbl
[4] A. A. Bolibrukh, Lokalnye i globalnye zadachi teorii osobennostei, Tr. MIAN, 221, 1998, 127–142 | MR | Zbl
[5] A. A. Bolibrukh, Fuksovy differentsialnye uravneniya i golomorfnye rassloeniya, Sovremennye lektsionnye kursy, MTsNMO, M., 2000
[6] I. V. Vyugin, R. R. Gontsov, Matem. sb., 197:12 (2006), 43–64