Inversion of Chernoff's Theorem
Matematičeskie zametki, Tome 83 (2008) no. 4, pp. 581-589.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we prove a theorem which is the inversion of Chernoff's theorem. As a consequence of this result, we obtain conditions for the validity of the Chernoff and Trotter product formulas.
Keywords: Chernoff's theorem, Chernoff product formula, Banach space, Feynman integral, contraction semigroup, precompact set.
Mots-clés : Trotter product formula
@article{MZM_2008_83_4_a9,
     author = {A. Yu. Neklyudov},
     title = {Inversion of {Chernoff's} {Theorem}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {581--589},
     publisher = {mathdoc},
     volume = {83},
     number = {4},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2008_83_4_a9/}
}
TY  - JOUR
AU  - A. Yu. Neklyudov
TI  - Inversion of Chernoff's Theorem
JO  - Matematičeskie zametki
PY  - 2008
SP  - 581
EP  - 589
VL  - 83
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2008_83_4_a9/
LA  - ru
ID  - MZM_2008_83_4_a9
ER  - 
%0 Journal Article
%A A. Yu. Neklyudov
%T Inversion of Chernoff's Theorem
%J Matematičeskie zametki
%D 2008
%P 581-589
%V 83
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2008_83_4_a9/
%G ru
%F MZM_2008_83_4_a9
A. Yu. Neklyudov. Inversion of Chernoff's Theorem. Matematičeskie zametki, Tome 83 (2008) no. 4, pp. 581-589. http://geodesic.mathdoc.fr/item/MZM_2008_83_4_a9/

[1] P. R. Chernov, “Note on product formulas for operator semigroups”, J. Funct. Anal., 2:2 (1968), 238–242 | DOI | MR | Zbl

[2] E. B. Davies, One-Parameter Semigroups, London Math. Soc. Monogr., 15, Academic Press, London–New York, 1980 | MR | Zbl

[3] O. G. Smolyanov, E. T. Shavgulidze, Kontinualnye integraly, Izd-vo MGU, M., 1990 | MR | Zbl

[4] O. G. Smolyanov, A. G. Tokarev, A. Truman, “Hamiltonian Feynman path integral via the Chernoff formula”, J. Math. Phys., 43:10 (2002), 5161–5171 | DOI | MR | Zbl

[5] K.-J. Engel, R. Nagel, One-Parameter Semigroups for Linear Evolution Equations, Grad. Texts in Math., 194, Springer-Verlag, New York, 2000 | DOI | MR | Zbl