Inversion of Chernoff's Theorem
Matematičeskie zametki, Tome 83 (2008) no. 4, pp. 581-589
Cet article a éte moissonné depuis la source Math-Net.Ru
In this paper, we prove a theorem which is the inversion of Chernoff's theorem. As a consequence of this result, we obtain conditions for the validity of the Chernoff and Trotter product formulas.
Keywords:
Chernoff's theorem, Chernoff product formula, Banach space, Feynman integral, contraction semigroup, precompact set.
Mots-clés : Trotter product formula
Mots-clés : Trotter product formula
@article{MZM_2008_83_4_a8,
author = {A. Yu. Neklyudov},
title = {Inversion of {Chernoff's} {Theorem}},
journal = {Matemati\v{c}eskie zametki},
pages = {581--589},
year = {2008},
volume = {83},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2008_83_4_a8/}
}
A. Yu. Neklyudov. Inversion of Chernoff's Theorem. Matematičeskie zametki, Tome 83 (2008) no. 4, pp. 581-589. http://geodesic.mathdoc.fr/item/MZM_2008_83_4_a8/
[1] P. R. Chernov, “Note on product formulas for operator semigroups”, J. Funct. Anal., 2:2 (1968), 238–242 | DOI | MR | Zbl
[2] E. B. Davies, One-Parameter Semigroups, London Math. Soc. Monogr., 15, Academic Press, London–New York, 1980 | MR | Zbl
[3] O. G. Smolyanov, E. T. Shavgulidze, Kontinualnye integraly, Izd-vo MGU, M., 1990 | MR | Zbl
[4] O. G. Smolyanov, A. G. Tokarev, A. Truman, “Hamiltonian Feynman path integral via the Chernoff formula”, J. Math. Phys., 43:10 (2002), 5161–5171 | DOI | MR | Zbl
[5] K.-J. Engel, R. Nagel, One-Parameter Semigroups for Linear Evolution Equations, Grad. Texts in Math., 194, Springer-Verlag, New York, 2000 | DOI | MR | Zbl