On Families of Complex Lines Sufficient for Holomorphic Extension
Matematičeskie zametki, Tome 83 (2008) no. 4, pp. 545-551
Voir la notice de l'article provenant de la source Math-Net.Ru
It is shown that the set $\mathfrak L_\Gamma$ of all complex lines passing through a germ of a generating manifold $\Gamma$ is sufficient for any continuous function $f$ defined on the boundary of a bounded domain $D\subset\mathbb C^n$ with connected smooth boundary and having the holomorphic one-dimensional extension property along all lines from $\mathfrak L_\Gamma$ to admit a holomorphic extension to $D$ as a function of many complex variables.
Keywords:
holomorphic extension property, family of complex lines, Hartogs' theorem, Bochner–Martinelli integral, Sard's theorem
Mots-clés : Cauchy–Riemann condition.
Mots-clés : Cauchy–Riemann condition.
@article{MZM_2008_83_4_a6,
author = {A. M. Kytmanov and S. G. Myslivets},
title = {On {Families} of {Complex} {Lines} {Sufficient} for {Holomorphic} {Extension}},
journal = {Matemati\v{c}eskie zametki},
pages = {545--551},
publisher = {mathdoc},
volume = {83},
number = {4},
year = {2008},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2008_83_4_a6/}
}
A. M. Kytmanov; S. G. Myslivets. On Families of Complex Lines Sufficient for Holomorphic Extension. Matematičeskie zametki, Tome 83 (2008) no. 4, pp. 545-551. http://geodesic.mathdoc.fr/item/MZM_2008_83_4_a6/