Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2008_83_4_a6, author = {A. M. Kytmanov and S. G. Myslivets}, title = {On {Families} of {Complex} {Lines} {Sufficient} for {Holomorphic} {Extension}}, journal = {Matemati\v{c}eskie zametki}, pages = {545--551}, publisher = {mathdoc}, volume = {83}, number = {4}, year = {2008}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2008_83_4_a6/} }
A. M. Kytmanov; S. G. Myslivets. On Families of Complex Lines Sufficient for Holomorphic Extension. Matematičeskie zametki, Tome 83 (2008) no. 4, pp. 545-551. http://geodesic.mathdoc.fr/item/MZM_2008_83_4_a6/
[1] M. L. Agranovskii, R. E. Valskii, “Maksimalnost invariantnykh algebr funktsii”, Sib. matem. zhurn., 12:1 (1971), 3–12 | MR | Zbl
[2] E. L. Stout, “The boundary values of holomorphic functions of several complex variables”, Duke Math. J., 44:1 (1977), 105–108 | DOI | MR | Zbl
[3] L. A. Aizenberg, A. P. Yuzhakov, Integralnye predstavleniya i vychety v mnogomernom kompleksnom analize, Nauka, Novosibirsk, 1979 | MR | Zbl
[4] A. M. Kytmanov, Integral Bokhnera–Martinelli i ego primeneniya, Nauka, Novosibirsk, 1992 | MR | Zbl
[5] A. M. Kytmanov, S. G. Myslivets, “Ob odnom granichnom analoge teoremy Morera”, Sib. matem. zhurn., 36:6 (1995), 1350–1353 | MR | Zbl
[6] A. M. Kytmanov, S. G. Myslivets, “On an application of the Bochner–Martinelli operator”, Operator Theory for Complex and Hypercomplex Analysis (Mexico City, 1994), Contemp. Math., 212, Amer. Math. Soc., Providence, RI, 1998, 133–136 | MR | Zbl
[7] A. M. Kytmanov, S. G. Myslivets, “Higher-dimensional boundary analogs of the Morera theorem in problems of analytic continuation of functions”, J. Math. Sci. (N. Y.), 120:6 (2004), 1842–1867 | DOI | MR | Zbl
[8] M. L. Agranovskii, A. M. Semenov, “Granichnye analogi teoremy Gartogsa”, Sib. matem. zhurn., 32:1 (1991), 168–170 | MR | Zbl
[9] J. Globevnik, E. L. Stout, “Boundary Morera theorems for holomorphic functions of several complex variables”, Duke Math. J., 64:3 (1991), 571–615 | DOI | MR | Zbl
[10] M. S. Baouendi, P. Ebenfelt, L. P. Rothschild, Real Submanifolds in Complex Space and Their Mappings, Princeton Math. Ser., 47, Princeton Univ. Press, Princeton, NJ, 1999 | MR | Zbl