On Families of Complex Lines Sufficient for Holomorphic Extension
Matematičeskie zametki, Tome 83 (2008) no. 4, pp. 545-551.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is shown that the set $\mathfrak L_\Gamma$ of all complex lines passing through a germ of a generating manifold $\Gamma$ is sufficient for any continuous function $f$ defined on the boundary of a bounded domain $D\subset\mathbb C^n$ with connected smooth boundary and having the holomorphic one-dimensional extension property along all lines from $\mathfrak L_\Gamma$ to admit a holomorphic extension to $D$ as a function of many complex variables.
Keywords: holomorphic extension property, family of complex lines, Hartogs' theorem, Bochner–Martinelli integral, Sard's theorem
Mots-clés : Cauchy–Riemann condition.
@article{MZM_2008_83_4_a6,
     author = {A. M. Kytmanov and S. G. Myslivets},
     title = {On {Families} of {Complex} {Lines} {Sufficient} for {Holomorphic} {Extension}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {545--551},
     publisher = {mathdoc},
     volume = {83},
     number = {4},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2008_83_4_a6/}
}
TY  - JOUR
AU  - A. M. Kytmanov
AU  - S. G. Myslivets
TI  - On Families of Complex Lines Sufficient for Holomorphic Extension
JO  - Matematičeskie zametki
PY  - 2008
SP  - 545
EP  - 551
VL  - 83
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2008_83_4_a6/
LA  - ru
ID  - MZM_2008_83_4_a6
ER  - 
%0 Journal Article
%A A. M. Kytmanov
%A S. G. Myslivets
%T On Families of Complex Lines Sufficient for Holomorphic Extension
%J Matematičeskie zametki
%D 2008
%P 545-551
%V 83
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2008_83_4_a6/
%G ru
%F MZM_2008_83_4_a6
A. M. Kytmanov; S. G. Myslivets. On Families of Complex Lines Sufficient for Holomorphic Extension. Matematičeskie zametki, Tome 83 (2008) no. 4, pp. 545-551. http://geodesic.mathdoc.fr/item/MZM_2008_83_4_a6/

[1] M. L. Agranovskii, R. E. Valskii, “Maksimalnost invariantnykh algebr funktsii”, Sib. matem. zhurn., 12:1 (1971), 3–12 | MR | Zbl

[2] E. L. Stout, “The boundary values of holomorphic functions of several complex variables”, Duke Math. J., 44:1 (1977), 105–108 | DOI | MR | Zbl

[3] L. A. Aizenberg, A. P. Yuzhakov, Integralnye predstavleniya i vychety v mnogomernom kompleksnom analize, Nauka, Novosibirsk, 1979 | MR | Zbl

[4] A. M. Kytmanov, Integral Bokhnera–Martinelli i ego primeneniya, Nauka, Novosibirsk, 1992 | MR | Zbl

[5] A. M. Kytmanov, S. G. Myslivets, “Ob odnom granichnom analoge teoremy Morera”, Sib. matem. zhurn., 36:6 (1995), 1350–1353 | MR | Zbl

[6] A. M. Kytmanov, S. G. Myslivets, “On an application of the Bochner–Martinelli operator”, Operator Theory for Complex and Hypercomplex Analysis (Mexico City, 1994), Contemp. Math., 212, Amer. Math. Soc., Providence, RI, 1998, 133–136 | MR | Zbl

[7] A. M. Kytmanov, S. G. Myslivets, “Higher-dimensional boundary analogs of the Morera theorem in problems of analytic continuation of functions”, J. Math. Sci. (N. Y.), 120:6 (2004), 1842–1867 | DOI | MR | Zbl

[8] M. L. Agranovskii, A. M. Semenov, “Granichnye analogi teoremy Gartogsa”, Sib. matem. zhurn., 32:1 (1991), 168–170 | MR | Zbl

[9] J. Globevnik, E. L. Stout, “Boundary Morera theorems for holomorphic functions of several complex variables”, Duke Math. J., 64:3 (1991), 571–615 | DOI | MR | Zbl

[10] M. S. Baouendi, P. Ebenfelt, L. P. Rothschild, Real Submanifolds in Complex Space and Their Mappings, Princeton Math. Ser., 47, Princeton Univ. Press, Princeton, NJ, 1999 | MR | Zbl