On Graded Distributive Modules
Matematičeskie zametki, Tome 83 (2008) no. 4, pp. 528-535.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $R$ be a $\mathbb Z$-graded commutative ring with identity. Several characterizations of graded distributive modules will be investigated.
Keywords: graded distributive module, commutative ring, Krull associated primes, distributive lattice, prime ideal, quasilocal ring.
@article{MZM_2008_83_4_a4,
     author = {N. Zamani},
     title = {On {Graded} {Distributive} {Modules}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {528--535},
     publisher = {mathdoc},
     volume = {83},
     number = {4},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2008_83_4_a4/}
}
TY  - JOUR
AU  - N. Zamani
TI  - On Graded Distributive Modules
JO  - Matematičeskie zametki
PY  - 2008
SP  - 528
EP  - 535
VL  - 83
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2008_83_4_a4/
LA  - ru
ID  - MZM_2008_83_4_a4
ER  - 
%0 Journal Article
%A N. Zamani
%T On Graded Distributive Modules
%J Matematičeskie zametki
%D 2008
%P 528-535
%V 83
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2008_83_4_a4/
%G ru
%F MZM_2008_83_4_a4
N. Zamani. On Graded Distributive Modules. Matematičeskie zametki, Tome 83 (2008) no. 4, pp. 528-535. http://geodesic.mathdoc.fr/item/MZM_2008_83_4_a4/

[1] T. M. K. Davison, “Distributive homomorphism of rings and modules”, J. Reine Angew. Math., 270 (1974), 28–34 | MR | Zbl

[2] W. Stephenson, “Modules whose lattice of submodules is distributive”, Proc. London Math. Soc. (3), 28 (1974), 291–310 | DOI | MR | Zbl

[3] V. Erdoğdu, “Distributive modules”, Canad. Math. Bull., 30:2 (1987), 248–254 | MR | Zbl

[4] V. Erdoğdu, “The distributive hull of a ring”, J. Algebra, 132:2 (1990), 263–269 | DOI | MR | Zbl

[5] V. Erdoğdu, “Cyclically decomposable distributive modules”, Comm. Algebra, 25:5 (1997), 1635–1639 | DOI | MR | Zbl

[6] A. A. Tuganbaev, Semidistributive Modules and Rings, Math. Appl., 449, Klüwer Academic, Dordrecht–Boston–London, 1998 | MR | Zbl

[7] A. A. Tuganbaev, Distributive Modules and Related Topics, Algebra, Logic and Appl., 12, Gordon Breach, Amsterdam, 1999 | MR | Zbl

[8] J. Escoriza, B. Torrecillas, “Multiplication objects in commutative Grothendieck categories”, Comm. Algebra, 26:6 (1998), 1867–1883 | DOI | MR | Zbl

[9] R. Naghipour, N. Zamani, “Graded distributive modules”, Southeast Asian Bull. Math., 29:6 (2005), 1095–1099 | MR | Zbl

[10] C. Nastasescu, F. van Oystaeyen, Graded Ring Theory, North-Holland Math. Library, 28, North-Holland Publishing Co., Amsterdam–New York, 1982 | MR | Zbl

[11] D. H. Underwood, “On some uniqueness questions in primary representations of ideals”, J. Math. Kyoto Univ., 9 (1969), 69–94 | MR | Zbl

[12] M. D. Larsen, P. J. McCarthy, Multiplicative Theory of Ideals, Pure Appl. Math., 43, Academic Press, New York–London, 1971 | MR | Zbl

[13] R. A. Kuntz, “Associated prime divisors in the sense of Krull”, Canad. J. Math., 24 (1972), 808–818 | MR | Zbl

[14] W. Bruns, J. Herzog, Cohen–Macaulay Rings, Cambridge Stud. Adv. Math., 39, Cambridge Univ. Press, Cambridge, 1998 | MR | Zbl

[15] S. Goto, K. Watanabe, “On graded rings. I”, J. Math. Soc. Japan, 30:2 (1978), 179–213 | DOI | MR | Zbl