Critical Non-Singly-Generated Totally Canonical Fitting Classes of Finite Groups
Matematičeskie zametki, Tome 83 (2008) no. 4, pp. 520-527.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\mathfrak I$ be the class of all finite simple groups and $f\colon\mathfrak I\to\{\text{Fitting classes of groups}\}$. The Fitting class $\mathfrak F=KR(f)=(G:O^{A,A'}(G)\in f(A)\text{ for any }A \in K(G))$ is referred to as a canonical Fitting class with satellite $f$. A non-singly-generated totally canonical Fitting class $\mathfrak F$ is said to be critical non-singly-generated if all proper totally canonical Fitting subclasses in $\mathfrak F$ are singly generated. In the paper, a complete description of the structure of the critical non-singly-generated totally canonical Fitting classes of finite groups is obtained.
Keywords: finite simple group, Fitting class, Fitting formation, singly generated Fitting class, local formation of finite groups.
Mots-clés : satellite
@article{MZM_2008_83_4_a3,
     author = {V. E. Egorova},
     title = {Critical {Non-Singly-Generated} {Totally} {Canonical} {Fitting} {Classes} of {Finite} {Groups}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {520--527},
     publisher = {mathdoc},
     volume = {83},
     number = {4},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2008_83_4_a3/}
}
TY  - JOUR
AU  - V. E. Egorova
TI  - Critical Non-Singly-Generated Totally Canonical Fitting Classes of Finite Groups
JO  - Matematičeskie zametki
PY  - 2008
SP  - 520
EP  - 527
VL  - 83
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2008_83_4_a3/
LA  - ru
ID  - MZM_2008_83_4_a3
ER  - 
%0 Journal Article
%A V. E. Egorova
%T Critical Non-Singly-Generated Totally Canonical Fitting Classes of Finite Groups
%J Matematičeskie zametki
%D 2008
%P 520-527
%V 83
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2008_83_4_a3/
%G ru
%F MZM_2008_83_4_a3
V. E. Egorova. Critical Non-Singly-Generated Totally Canonical Fitting Classes of Finite Groups. Matematičeskie zametki, Tome 83 (2008) no. 4, pp. 520-527. http://geodesic.mathdoc.fr/item/MZM_2008_83_4_a3/

[1] V. G. Safonov, “Ob odnom voprose teorii totalno lokalnykh formatsii konechnykh grupp”, Algebra i logika, 42:6 (2003), 727–736 | MR | Zbl

[2] V. G. Safonov, “K teorii totalno lokalnykh klassov Fittinga”, Gashyutseva teoriya klassov grupp i drugikh algebraicheskikh sistem, Tezisy dokladov Mezhd. nauch. konf., posvyaschennoi 80-letiyu prof. Volfganga Gashyutsa, Gomel, 2000, 46–47

[3] O. V. Kamozina, “O neodnoporozhdennykh kratno $\Omega$-veernykh klassakh Fittinga konechnykh grupp”, Matem. zametki, 79:3 (2006), 396–408 | MR | Zbl

[4] V. A. Vedernikov, M. M. Sorokina, “$\Omega$-rassloennye formatsii i klassy Fittinga konechnykh grupp”, Diskretnaya matem., 13 (2001), 125–144 | MR | Zbl

[5] V. A. Vedernikov, V. E. Egorova, “Kriticheskie neodnoporozhdennye totalno $\Omega$-kanonicheskie formatsii konechnykh grupp”, Izv. Gomelskogo gos. un-ta im. F. Skoriny, 3 (2006), 8–13

[6] L. A. Shemetkov, Formatsii konechnykh grupp, Sovremennaya algebra, Nauka, M., 1978 | MR | Zbl

[7] L. A. Shemetkov, A. N. Skiba, Formatsii algebraicheskikh sistem, Sovremennaya algebra, Nauka, M., 1989 | MR | Zbl

[8] A. N. Skiba, Algebra formatsii, Belaruskaya navuka, Minsk, 1997 | MR | Zbl

[9] K. Doerk, T. Hawkes, Finite Soluble Groups, de Gruyter Exp. Math., 4, Walter de Gruyter Co., Berlin–New York, 1992 | MR | Zbl

[10] M. M. Sorokina, “O minimalnykh sputnikakh kratno $\Omega$-rassloennykh klassov Fittinga i formatsii konechnykh grupp”, Bryanskomu gos. ped. un-tu 70 let. Sb. nauch. trudov, BGPU, Bryansk, 2000, 199–203

[11] V. A. Vedernikov, “Maximal satellites of $\Omega$-foliated formations and Fitting classes”, Algebra. Topology, suppl. 2, Proc. Steklov Inst. Math., 2001, 217–233 | MR