Asymptotic Behavior of the Eigenvalues of the Schr\"odinger Operator in Thin Closed Tubes
Matematičeskie zametki, Tome 83 (2008) no. 4, pp. 503-519.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the present paper, we obtain an asymptotic expansion of the eigenvalues of the Schrödinger operator with the magnetic field taken into account and with zero Dirichlet conditions in closed tubes, i.e., in closed curved cylinders with intrinsic torsion under uniform compression of the transverse cross-sections, with respect to a small parameter characterizing the tube's transverse dimensions. We propose a method for reducing the eigenvalue problem to the problem of solving an implicit equation.
Keywords: Schrödinger operator, eigenvalue problem, asymptotics, thin closed tube, Dirichlet condition, Laplace operator.
Mots-clés : small perturbation
@article{MZM_2008_83_4_a2,
     author = {V. V. Grushin},
     title = {Asymptotic {Behavior} of the {Eigenvalues} of the {Schr\"odinger} {Operator} in {Thin} {Closed} {Tubes}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {503--519},
     publisher = {mathdoc},
     volume = {83},
     number = {4},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2008_83_4_a2/}
}
TY  - JOUR
AU  - V. V. Grushin
TI  - Asymptotic Behavior of the Eigenvalues of the Schr\"odinger Operator in Thin Closed Tubes
JO  - Matematičeskie zametki
PY  - 2008
SP  - 503
EP  - 519
VL  - 83
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2008_83_4_a2/
LA  - ru
ID  - MZM_2008_83_4_a2
ER  - 
%0 Journal Article
%A V. V. Grushin
%T Asymptotic Behavior of the Eigenvalues of the Schr\"odinger Operator in Thin Closed Tubes
%J Matematičeskie zametki
%D 2008
%P 503-519
%V 83
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2008_83_4_a2/
%G ru
%F MZM_2008_83_4_a2
V. V. Grushin. Asymptotic Behavior of the Eigenvalues of the Schr\"odinger Operator in Thin Closed Tubes. Matematičeskie zametki, Tome 83 (2008) no. 4, pp. 503-519. http://geodesic.mathdoc.fr/item/MZM_2008_83_4_a2/

[1] V. P. Maslov, “Asimptotika sobstvennykh funktsii uravneniya $\Delta u+k^2u=0$ s kraevymi usloviyami na ekvidistantnykh krivykh i rasseyanie elektromagnitnykh voln v volnovode”, Dokl. AN SSSR, 123:3 (1958), 631–633 | MR | Zbl

[2] V. P. Maslov, “Mathematical aspects of integral optics”, Russ. J. Math. Phys., 8:1 (2001), 83–105 | MR | Zbl

[3] V. P. Maslov, E. M. Vorobev, “Ob odnomodovykh otkrytykh rezonatorakh”, Dokl. AN SSSR, 179:3 (1968), 558–561

[4] V. V. Belov, S. Yu. Dobrokhotov, S. O. Sinitsyn, “Asimptoticheskie resheniya uravneniya Shrëdingera v tonkikh trubkakh”, Tr. in-ta matem. mekh. UrO RAN, 9:1 (2003), 15–25 | MR | Zbl

[5] V. V. Belov, S. Yu. Dobrokhotov, S. O. Sinitsyn, T. Ya. Tudorovskii, “Kvaziklassicheskoe priblizhenie i kanonicheskii operator Maslova dlya nerelyativistskikh uravnenii kvantovoi mekhaniki v nanotrubkakh”, Dokl. RAN, 393:4 (2003), 460–464 | MR

[6] V. V. Belov, S. Yu. Dobrokhotov, T. Ya. Tudorovskii, “Quantum and classical dynamics of electron in thin curved tubes with spin and external electromagnetic fields taken into account”, Russ. J. Math. Phys., 11:1 (2004), 109–118 | MR | Zbl

[7] V. V. Belov, S. Yu. Dobrokhotov, T. Ya. Tudorovskii, “Asimptoticheskie resheniya nerelyativistskikh uravnenii kvantovoi mekhaniki v iskrivlennykh nanotrubkakh”, TMF, 141:2 (2004), 267–303 | MR

[8] V. V. Belov, S. Yu. Dobrokhotov, V. P. Maslov, T. Ya. Tudorovskii, “Obobschennyi adiabaticheskii printsip dlya opisaniya dinimiki elektrona v iskrivlennykh nanotrubkakh”, UFN, 175:9 (2005), 1004–1010 | DOI

[9] P. Duclos, P. Exner, “Curvature-induced bound states in quantum waveguides in two and three dimensions”, Rev. Math. Phys., 7:1 (1995), 73–102 | DOI | MR | Zbl

[10] P. Exner, P. Šeba, “Bound states in curved quantum waveguides”, J. Math. Phys., 30:11 (1989), 2574–2580 | DOI | MR | Zbl

[11] P. Exner, “Bound states in quantum waveguides of a slowly decaying curvature”, J. Math. Phys., 34:1 (1993), 23–28 | DOI | MR | Zbl

[12] W. Bulla, F. Gesztesy, W. Renger, B. Simon, “Weakly couped bound states in quantum waveguides”, Proc. Amer. Math. Soc., 125:2 (1997), 1487–1495 | DOI | MR | Zbl

[13] P. Exner, S. A. Vugalter, “Bounds states in a locally deformed waveguide: the critical value”, Lett. Math. Phys., 39:1 (1997), 59–68 | DOI | MR | Zbl

[14] D. Borisov, P. Exner, R. Gadyl'shin, D. Krejčiřík, “Bound states in a weakly deformed strips and layers”, Ann. Henri Poincaré, 2:3 (2001), 553–572 | DOI | MR | Zbl

[15] V. V. Grushin, “O sobstvennykh znacheniyakh finitno voemuschennogo operatora Laplasa v beskonechnykh tsilindricheskikh oblastyakh”, Matem. zametki, 75:3 (2004), 360–371 | MR | Zbl

[16] V. V. Grushin, “Asimptoticheskoe povedenie sobstvennykh znachenii operatora Shrëdingera s poperechnym potentsialom v slabo iskrivlennykh beskonechnykh tsilindrakh”, Matem. zametki, 77:5 (2005), 656–664 | MR | Zbl

[17] V. V. Grushin, “Asimptoticheskoe povedenie sobstvennykh znachenii operatora Laplasa v beskonechnykh tsilindrakh, vozmuschennykh poperechnymi rastyazheniyami”, Matem. zametki, 81:3 (2007), 328–334 | MR | Zbl

[18] V. V. Grushin, “Asimptoticheskoe povedenie sobstvennykh znachenii operatora Laplasa v tonkikh beskonechnykh trubkakh”, Matem. zametki (to appear)

[19] R. R. Gadylshin, “O lokalnykh vozmuscheniyakh kvantovykh volnovodov”, TMF, 145:3 (2005), 358–371 | MR

[20] J. L. Lions, E. Magenes, Problèmes aux limites non homogènes et applications, v. 1, Travaux et Recherches Mathématiques, 18, Dunod, Paris, 1968 ; Zh.-L. Lions, E. Mazhenes, Neodnorodnye granichnye zadachi i ikh prilozheniya, Mir, M., 1971 | MR | Zbl | MR | Zbl

[21] L. Hörmander, Linear Partial Differential Operators, Grundlehren Math. Wiss., 116, Springer-verlag, Berlin, 1963 ; L. Khërmander, Lineinye differentsialnye operatory, Mir, M., 1965 | MR | Zbl | MR | Zbl

[22] L. I. Magarill, M. V. Entin, “Elektrony v krivolineinoi kvantovoi provoloke”, ZhETF, 123:4 (2003), 867–876

[23] M. Reed, B. Simon, Methods of Modern Mathematical Physics, IV. Analysis of Operators, Academic Press, New York, 1978 ; M. Rid, B. Saimon, Metody sovremennoi matematicheskoi fiziki, 4. Analiz operatorov, Mir, M., 1982 | MR | Zbl | MR | Zbl

[24] M. S. Agranovich, M. I. Vishik, “Ellipticheskie zadachi s parametrom i parabolicheskie zadachi obschego vida”, UMN, 19:3 (1964), 53–161 | MR | Zbl

[25] V. V. Grushin, “Ob odnom klasse psevdodifferentsialnykh operatorov, vyrozhdayuschikhsya na podmnogoobrazii”, Matem. sb., 84:2 (1971), 163–195 | MR | Zbl