Tensor Products of Power K\"othe Spaces of Different Types
Matematičeskie zametki, Tome 83 (2008) no. 4, pp. 629-635.

Voir la notice de l'article provenant de la source Math-Net.Ru

The multirectangular characteristics $\mu_m^{(\lambda,c)}$ are applied to the isomorphic classification of tensor products of the form $E_0(a)\mathbin{\widehat\otimes} E_\infty(b)$. We single out a subclass of tensor products such that the two-rectangular characteristic $\mu_2^{(\lambda,c)}$ is a complete invariant on this class.
Keywords: power Köthe space, tensor product, lacunary sequence, Cantor–Bernstein construction
Mots-clés : Fréchet space, Montel space, prenorm.
@article{MZM_2008_83_4_a14,
     author = {P. A. Chalov},
     title = {Tensor {Products} of {Power} {K\"othe} {Spaces} of {Different} {Types}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {629--635},
     publisher = {mathdoc},
     volume = {83},
     number = {4},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2008_83_4_a14/}
}
TY  - JOUR
AU  - P. A. Chalov
TI  - Tensor Products of Power K\"othe Spaces of Different Types
JO  - Matematičeskie zametki
PY  - 2008
SP  - 629
EP  - 635
VL  - 83
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2008_83_4_a14/
LA  - ru
ID  - MZM_2008_83_4_a14
ER  - 
%0 Journal Article
%A P. A. Chalov
%T Tensor Products of Power K\"othe Spaces of Different Types
%J Matematičeskie zametki
%D 2008
%P 629-635
%V 83
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2008_83_4_a14/
%G ru
%F MZM_2008_83_4_a14
P. A. Chalov. Tensor Products of Power K\"othe Spaces of Different Types. Matematičeskie zametki, Tome 83 (2008) no. 4, pp. 629-635. http://geodesic.mathdoc.fr/item/MZM_2008_83_4_a14/

[1] M. Meise, D. Vogt, Introduction to Fuctional Analysis, Oxf. Grad. Texts Math., 2, Oxford Univ. Press, New York, 1997 | MR | Zbl

[2] M. M. Dragilev, Bazisy v prostranstvakh Kete, Izd-vo Rostovskogo gos. un-ta, Rostov-na-Donu, 1983 | MR | Zbl

[3] A. Grothendieck, Produits tensoriels topologiques et espaces nucléaires, Mem. Amer. Math. Soc., 16, Amer. Math. Soc., Providence, RI, 1955 | MR | Zbl

[4] V. P. Zahariuta, “Linear topological invariants and their application to generalized power spaces”, Turkish J. Math., 20:2 (1996), 237–289 | MR | Zbl

[5] B. S. Mityagin, “Approksimativnaya razmernost i bazisy v yadernykh prostranstvakh”, UMN, 16:4 (1961), 63–132 | MR | Zbl

[6] A. Pietsch, Nukleare Lokalkonvexe Räume, Schriftenreihe der Institute Für Mathematik bei der Deutschen Akademie der Wissenschaften zu Berlin. Reihe A, Reine Mathematik, Heft 1, Akademie-Verlag, Berlin, 1965 | MR | Zbl

[7] V. P. Zakharyuta, “Ob izomorfizme i kvaziekvivalentnosti bazisov dlya stepennykh prostranstv Kete”, Trudy 7-i zimnei shkoly po matematicheskomu programmirovaniyu i smezhnym voprosam (Drogobych, 1974), TsEMI, M., 1976, 101–126

[8] Kh. Shefer, Topologicheskie vektornye prostranstva, Mir, M., 1971 | MR | Zbl

[9] P. A. Chalov, T. Terzioğlu, V. P. Zahariuta, “First type power Köthe spaces and $m$-rectangular invariants”, Dedicated to Professor Vyacheslav Pavlovich Zahariuta, Linear Topol. Spaces Complex Anal., 3, Sci. Tech. Res. Council Turkey, Ankara, 1997, 30–44 | MR | Zbl

[10] M. Kholl, Kombinatorika, Mir, M., 1970 | MR | Zbl