Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2008_83_4_a14, author = {P. A. Chalov}, title = {Tensor {Products} of {Power} {K\"othe} {Spaces} of {Different} {Types}}, journal = {Matemati\v{c}eskie zametki}, pages = {629--635}, publisher = {mathdoc}, volume = {83}, number = {4}, year = {2008}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2008_83_4_a14/} }
P. A. Chalov. Tensor Products of Power K\"othe Spaces of Different Types. Matematičeskie zametki, Tome 83 (2008) no. 4, pp. 629-635. http://geodesic.mathdoc.fr/item/MZM_2008_83_4_a14/
[1] M. Meise, D. Vogt, Introduction to Fuctional Analysis, Oxf. Grad. Texts Math., 2, Oxford Univ. Press, New York, 1997 | MR | Zbl
[2] M. M. Dragilev, Bazisy v prostranstvakh Kete, Izd-vo Rostovskogo gos. un-ta, Rostov-na-Donu, 1983 | MR | Zbl
[3] A. Grothendieck, Produits tensoriels topologiques et espaces nucléaires, Mem. Amer. Math. Soc., 16, Amer. Math. Soc., Providence, RI, 1955 | MR | Zbl
[4] V. P. Zahariuta, “Linear topological invariants and their application to generalized power spaces”, Turkish J. Math., 20:2 (1996), 237–289 | MR | Zbl
[5] B. S. Mityagin, “Approksimativnaya razmernost i bazisy v yadernykh prostranstvakh”, UMN, 16:4 (1961), 63–132 | MR | Zbl
[6] A. Pietsch, Nukleare Lokalkonvexe Räume, Schriftenreihe der Institute Für Mathematik bei der Deutschen Akademie der Wissenschaften zu Berlin. Reihe A, Reine Mathematik, Heft 1, Akademie-Verlag, Berlin, 1965 | MR | Zbl
[7] V. P. Zakharyuta, “Ob izomorfizme i kvaziekvivalentnosti bazisov dlya stepennykh prostranstv Kete”, Trudy 7-i zimnei shkoly po matematicheskomu programmirovaniyu i smezhnym voprosam (Drogobych, 1974), TsEMI, M., 1976, 101–126
[8] Kh. Shefer, Topologicheskie vektornye prostranstva, Mir, M., 1971 | MR | Zbl
[9] P. A. Chalov, T. Terzioğlu, V. P. Zahariuta, “First type power Köthe spaces and $m$-rectangular invariants”, Dedicated to Professor Vyacheslav Pavlovich Zahariuta, Linear Topol. Spaces Complex Anal., 3, Sci. Tech. Res. Council Turkey, Ankara, 1997, 30–44 | MR | Zbl