Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2008_83_3_a9, author = {G. G. Sirbiladze}, title = {Transformation {Theorems} for {Extended} {Lower} and {Upper} {Sugeno} {Integrals}}, journal = {Matemati\v{c}eskie zametki}, pages = {439--460}, publisher = {mathdoc}, volume = {83}, number = {3}, year = {2008}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2008_83_3_a9/} }
G. G. Sirbiladze. Transformation Theorems for Extended Lower and Upper Sugeno Integrals. Matematičeskie zametki, Tome 83 (2008) no. 3, pp. 439-460. http://geodesic.mathdoc.fr/item/MZM_2008_83_3_a9/
[1] M. Delgado, S. Moral, “Upper and lower fuzzy measures”, Fuzzy Sets and Systems, 33:2 (1989), 191–200 | DOI | MR | Zbl
[2] Fuzzy Measures and Integrals. Theory and Applications, Stud. Fuzziness Soft Comput., 40, eds. M. Grabish, T. Murofushi, M. Sugeno, Physica-Verlag, Heidelberg, 2000 | MR | Zbl
[3] T. Murofushi, M. Sugeno, “An interpretation of fuzzy measures and the Choquet integral as an integral with respect to a fuzzy measure”, Fuzzy Sets and Systems, 29:2 (1989), 201–227 | DOI | MR | Zbl
[4] T. Murofushi, M. Sugeno, “Fuzzy measures and integrals”, Fuzzy Measures and Integrals, Physica-Verlag, Heidelberg, 1999, 3–41 | MR | Zbl
[5] G. Sirbiladze, A. Sikharulidze, “Weighted fuzzy averages in fuzzy environment: Part I. Insufficient expert data and fuzzy averages”, Internat. J. Uncertain. Fuzziness Knowledge-Based Systems, 2:2 (2003), 139–157 | DOI | MR | Zbl
[6] G. Sirbiladze, N. Zaporozhets, “About two probability representations of fuzzy measures on a finite set”, J. Fuzzy Math., 11:3 (2003), 549–565 | MR | Zbl
[7] M. Sugeno, Theory of Fuzzy Integrals and its Applications, Thesis, Tokyo Institute of Technology, 1979
[8] M. Grabisch, “Fuzzy integral in multicriteria decision making”, Fuzzy Sets and Systems, 69:3 (1995), 279–298 | DOI | MR | Zbl
[9] Z. Wang, G. J. Klir, Fuzzy Measure Theory, Plenum Press, New York, 1992 | MR | Zbl
[10] G. J. Klir, Z. Wang, D. Harmanec, “Construction of fuzzy measures in expert systems”, Fuzzy Sets and Systems, 92:2 (1997), 251–264 | DOI | MR | Zbl
[11] D. Dubois, H. Prade, Possibility Theory. An Approach to Computerized Processing of Uncertainty, Plenum Press, New York, 1988 | MR | Zbl