Transformation Theorems for Extended Lower and Upper Sugeno Integrals
Matematičeskie zametki, Tome 83 (2008) no. 3, pp. 439-460.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we consider the main properties of extended extremal fuzzy measures and give several versions of their representation. We prove several transformation theorems for extended lower and upper Sugeno integrals.
Keywords: Sugeno integral, transformation theorem, fuzzy integral, fuzzy measure, extremal fuzzy measure, Borel sigma-algebra, extremal measure space.
@article{MZM_2008_83_3_a9,
     author = {G. G. Sirbiladze},
     title = {Transformation {Theorems} for {Extended} {Lower} and {Upper} {Sugeno} {Integrals}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {439--460},
     publisher = {mathdoc},
     volume = {83},
     number = {3},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2008_83_3_a9/}
}
TY  - JOUR
AU  - G. G. Sirbiladze
TI  - Transformation Theorems for Extended Lower and Upper Sugeno Integrals
JO  - Matematičeskie zametki
PY  - 2008
SP  - 439
EP  - 460
VL  - 83
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2008_83_3_a9/
LA  - ru
ID  - MZM_2008_83_3_a9
ER  - 
%0 Journal Article
%A G. G. Sirbiladze
%T Transformation Theorems for Extended Lower and Upper Sugeno Integrals
%J Matematičeskie zametki
%D 2008
%P 439-460
%V 83
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2008_83_3_a9/
%G ru
%F MZM_2008_83_3_a9
G. G. Sirbiladze. Transformation Theorems for Extended Lower and Upper Sugeno Integrals. Matematičeskie zametki, Tome 83 (2008) no. 3, pp. 439-460. http://geodesic.mathdoc.fr/item/MZM_2008_83_3_a9/

[1] M. Delgado, S. Moral, “Upper and lower fuzzy measures”, Fuzzy Sets and Systems, 33:2 (1989), 191–200 | DOI | MR | Zbl

[2] Fuzzy Measures and Integrals. Theory and Applications, Stud. Fuzziness Soft Comput., 40, eds. M. Grabish, T. Murofushi, M. Sugeno, Physica-Verlag, Heidelberg, 2000 | MR | Zbl

[3] T. Murofushi, M. Sugeno, “An interpretation of fuzzy measures and the Choquet integral as an integral with respect to a fuzzy measure”, Fuzzy Sets and Systems, 29:2 (1989), 201–227 | DOI | MR | Zbl

[4] T. Murofushi, M. Sugeno, “Fuzzy measures and integrals”, Fuzzy Measures and Integrals, Physica-Verlag, Heidelberg, 1999, 3–41 | MR | Zbl

[5] G. Sirbiladze, A. Sikharulidze, “Weighted fuzzy averages in fuzzy environment: Part I. Insufficient expert data and fuzzy averages”, Internat. J. Uncertain. Fuzziness Knowledge-Based Systems, 2:2 (2003), 139–157 | DOI | MR | Zbl

[6] G. Sirbiladze, N. Zaporozhets, “About two probability representations of fuzzy measures on a finite set”, J. Fuzzy Math., 11:3 (2003), 549–565 | MR | Zbl

[7] M. Sugeno, Theory of Fuzzy Integrals and its Applications, Thesis, Tokyo Institute of Technology, 1979

[8] M. Grabisch, “Fuzzy integral in multicriteria decision making”, Fuzzy Sets and Systems, 69:3 (1995), 279–298 | DOI | MR | Zbl

[9] Z. Wang, G. J. Klir, Fuzzy Measure Theory, Plenum Press, New York, 1992 | MR | Zbl

[10] G. J. Klir, Z. Wang, D. Harmanec, “Construction of fuzzy measures in expert systems”, Fuzzy Sets and Systems, 92:2 (1997), 251–264 | DOI | MR | Zbl

[11] D. Dubois, H. Prade, Possibility Theory. An Approach to Computerized Processing of Uncertainty, Plenum Press, New York, 1988 | MR | Zbl